Skip to content
Snippets Groups Projects
Commit be1d46e7 authored by Henrik tom Wörden's avatar Henrik tom Wörden
Browse files

DOC: update the single structured file tutorial

parent 7f60764c
No related branches found
No related tags found
1 merge request!189DOC: update the single structured file tutorial
Pipeline #56539 passed with warnings
......@@ -9,4 +9,4 @@ This chapter contains a collection of tutorials.
Parameter File<parameterfile>
Scientific Data Folder<scifolder>
WIP: Single Structured File <single_file>
Single Structured File <single_file>
WIP Tutorial: Single structured file
Tutorial: Single structured file
====================================
.. warning::
In this tutorial, we will create a crawler that reads a single structured file,
such as a CSV file.
This tutorial is still work in progress. It may be better than nothing, but it is still
incomplete and probably contains serious errors.
Declarations
------------
This tutorial is based on the following simple data model:
``model.yml``
Use at your own risk.
.. code-block:: yaml
In this tutorial, we will create a crawler that reads a single structured file, such as an XLSX
file.
Fish:
recommended_properties:
date:
datatype: DATETIME
number:
datatype: INTEGER
weight:
datatype: DOUBLE
species:
datatype: TEXT
Declarations
------------
You can insert this model with the following command:
.. code-block:: shell
python -m caosadvancedtools.models.parser model.yml --sync
We will identify `Fish` Records in LinkAhead using the following two
attributes.
``identifiables.yml``
.. code-block:: yaml
Präventionsmaßnahme:
- Organisation
- titel
- Laufzeit
Fish:
- date
- number
And we will use the following crawler configuration.
``cfood.yml``
.. code-block:: yaml
---
metadata:
crawler-version: 0.6.1
---
Präventionsmaßnahme der Organisation: # Eine Excel-Datei mit Präventionsmaßnahmen
type: XLSXTableConverter
match: ".*xlsx$" # Any xlsx file.
subtree:
Maßnahme: # Eine Zeile in der Datei
type: DictElement
match_name: .*
match_value: .*
records:
Präventionsmaßnahme: # Records edited for each row
name: ""
subtree:
MaßnahmenArt: # Spalte mit Art der Maßnahme
type: IntegerElement
match_name: Art der Maßnahme # Name of the column in the table file
match_value: (?P<column_value).*)
MaßnahmenTitel:
type: TextElement
match_name: Titel der Maßnahme # Name of the column in the table file
match_value: (?P<column_value).*)
records: # Records edited for each cell
Präventionsmaßnahme:
titel: $column_value
---
metadata:
crawler-version: 0.9.1
---
fish_data_file: # Eine Excel-Datei mit Präventionsmaßnahmen
type: CSVTableConverter
match: "^fish_data_.*.csv$" # CSV file with a name that starts with "fish_data_"
sep: ";"
subtree:
table_row: # Eine Zeile in der Datei
type: DictElement
match_name: .* # we want to treat every row
match_value: .*
records:
Fish: # Record for the current row; information from statements below
# are added to this Record
subtree:
date: # Spalte mit Art der Maßnahme
type: TextElement
match_name: date # Name of the column in the table file
match_value: (?P<column_value>.*)
records: # Records edited for each cell
Fish:
date: $column_value
species:
type: TextElement
match_name: species
match_value: (?P<column_value>.*)
records:
Fish:
species: $column_value
number:
type: TextElement
match_name: identifier
match_value: (?P<column_value>.*)
records:
Fish:
number: $column_value
weight:
type: TextElement
match_name: weight
match_value: (?P<column_value>.*)
records:
Fish:
weight: $column_value
Python code
-----------
The following code allows us to read the csv file, create corresponding `Fish`
Records and synchronize those with LinkAhead.
.. code-block:: python
#!/usr/bin/env python3
# Crawler für Präventionsmaßnahme
#
# Copyright (C) 2023 IndiScale GmbH <info@indiscale.com>
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as
# published by the Free Software Foundation, either version 3 of the
# License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
"""Crawler für Präventionsmaßnahmen"""
import argparse
from caoscrawler.scanner import load_definition, create_converter_registry, scan_structure_elements
from caoscrawler.structure_elements import File
def crawl_file(filename: str, dry_run: bool = False):
"""Read an XLSX file into a LinkAhead container.
Parameters
----------
filename : str
The name of the XLSX file.
dry_run : bool
If True, do not modify the database.
"""
definition = load_definition("cfood.yml")
converter_registry = create_converter_registry(definition)
records = scan_structure_elements(items=File(name="somename.xlsx", path=filename),
crawler_definition=definition,
converter_registry=converter_registry)
from IPython import embed
embed()
def _parse_arguments():
"""Parse the arguments."""
parser = argparse.ArgumentParser(description='Crawler für Präventionsmaßnahme')
parser.add_argument('-n', '--dry-run', help="Do not modify the database.", action="store_true")
parser.add_argument('xlsx_file', metavar="XSLX file", help="The xlsx file to be crawled.")
return parser.parse_args()
def main():
"""Main function."""
args = _parse_arguments()
crawl_file(args.xlsx_file, dry_run=args.dry_run)
if __name__ == '__main__':
main()
#!/usr/bin/env python3
# Copyright (C) 2023-2024 IndiScale GmbH <info@indiscale.com>
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as
# published by the Free Software Foundation, either version 3 of the
# License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
"""Crawler for fish data"""
import os
import argparse
import sys
import logging
from caoscrawler.scanner import load_definition, create_converter_registry, scan_structure_elements
from caoscrawler.structure_elements import File
from caoscrawler import Crawler, SecurityMode
from caoscrawler.identifiable_adapters import CaosDBIdentifiableAdapter
def crawl_file(filename: str, dry_run: bool = False):
"""Read a CSV file into a LinkAhead container.
Parameters
----------
filename : str
The name of the CSV file.
dry_run : bool
If True, do not modify the database.
"""
# setup logging
logger = logging.getLogger("caoscrawler")
logger.setLevel(level=(logging.DEBUG))
logger.addHandler(logging.StreamHandler(stream=sys.stdout))
# load crawler configuration
definition = load_definition("cfood.yml")
converter_registry = create_converter_registry(definition)
# crawl the CSV file
records = scan_structure_elements(items=File(name= os.path.basename(filename), path=filename),
crawler_definition=definition,
converter_registry=converter_registry)
logger.debug(records)
crawler = Crawler(securityMode=SecurityMode.UPDATE)
# This defines how Records on the server are identified with the ones we have locally
ident = CaosDBIdentifiableAdapter()
ident.load_from_yaml_definition("identifiables.yml")
crawler.identifiableAdapter = ident
# Here we synchronize the data
inserts, updates = crawler.synchronize(commit_changes=True, unique_names=True,
crawled_data=records)
from IPython import embed
embed()
def _parse_arguments():
"""Parse the arguments."""
parser = argparse.ArgumentParser(description='Crawler for fish data')
parser.add_argument('-n', '--dry-run', help="Do not modify the database.", action="store_true")
parser.add_argument('csv_file', metavar="csv file", help="The csv file to be crawled.")
return parser.parse_args()
def main():
"""Main function."""
args = _parse_arguments()
crawl_file(args.csv_file, dry_run=args.dry_run)
if __name__ == '__main__':
main()
Running it
----------
This is an example for the data files that we can crawl:
``fish_data_1.csv``
.. code-block:: csv
identifier;date;species;weight
1;2022-01-02;pike;3.4
2;2022-01-02;guppy;2.3
3;2022-01-02;pike;2.2
3;2022-01-06;pike;2.1
If you have created all the files, you can run:
.. code-block:: shell
python3 crawl.py fish_data_2.csv
Note, that you can run the same script again and you will not see any changes
being done to the data in LinkAhead.
You may play around with changing data in the data table. Changes will
propagate into LinkAhead when you run the Crawler again. If you change one of
the identifying properties, the Crawler will consider the data that it reads as
new and create new `Fish` Records.
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment