Skip to content
Snippets Groups Projects
Verified Commit 7787203e authored by Daniel Hornung's avatar Daniel Hornung
Browse files

DOC: Some rewording and typos.

parent 6e41fd1d
Branches
Tags
2 merge requests!107Release v0.11.0,!106F gaps in int columns
Pipeline #52563 passed
......@@ -14,7 +14,7 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
### Changed ###
- The `TableImporter` and its subclasses now change all integer datatypes to the
nullable `pandas.Int64Datatype` s.th. integer columns with empty fields can be
nullable `pandas.Int64Datatype` so that integer columns with empty fields can be
treated properly. In case you don't want the datatypes to be changed
automatically, initialize the `TableImporter` with
`convert_int_to_nullable_int=False`.
......
......@@ -244,8 +244,8 @@ class TableImporter():
Parameters
----------
converters : dict
Dict with column names as keys and converter functions as values. This dict also defines
what columns are required to exist throught the existing keys. The converter functions are
Dict with column names as keys and converter functions as values. This dict's keys also
define what columns must exist. The converter functions are
applied to the cell values. They should also check for ValueErrors, such that a separate
value check is not necessary.
......@@ -267,7 +267,7 @@ class TableImporter():
convert_int_to_nullable_int : bool, optional
Whether to convert all integer datatypes to ``pandas.Int64Dtype()``
which is nullable, to allow for integer columns with empty fields. If
set to False, a ``DataInConsistencyError`` will be raised in case of
set to False, a ``DataInconsistencyError`` will be raised in case of
empty fields in integer columns. Default is True.
"""
......
......@@ -370,7 +370,7 @@ class CSVImporterTest(TableImporterTest):
df = importer_strict.read_file(tmpfile.name)
assert "Integer column has NA values in column 1" in str(die.value)
# ... except when a nullable datatype is set explicitly
# ... except when a nullable datatype is set manually beforehand
kwargs["datatypes"]["int_with_gaps"] = "Int64"
importer_strict = CSVImporter(convert_int_to_nullable_int=False, **kwargs)
df = importer_strict.read_file(tmpfile.name)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment