Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
C
caosdb-advanced-user-tools
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
caosdb
Software
caosdb-advanced-user-tools
Commits
2f9d7ed2
Commit
2f9d7ed2
authored
11 months ago
by
Florian Spreckelsen
Browse files
Options
Downloads
Patches
Plain Diff
FIX: Add treatment for empty fields in integer columns
parent
da5dcaba
No related branches found
No related tags found
2 merge requests
!107
Release v0.11.0
,
!106
F gaps in int columns
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
src/caosadvancedtools/table_importer.py
+56
-26
56 additions, 26 deletions
src/caosadvancedtools/table_importer.py
unittests/test_table_importer.py
+57
-0
57 additions, 0 deletions
unittests/test_table_importer.py
with
113 additions
and
26 deletions
src/caosadvancedtools/table_importer.py
+
56
−
26
View file @
2f9d7ed2
...
@@ -205,12 +205,41 @@ def string_in_list(val, options, ignore_case=True):
...
@@ -205,12 +205,41 @@ def string_in_list(val, options, ignore_case=True):
return
val
return
val
def
_pandas_typecheck
(
candidate
,
dtype
):
if
pd
.
api
.
types
.
is_integer_dtype
(
dtype
):
return
pd
.
api
.
types
.
is_integer_dtype
(
candidate
)
if
pd
.
api
.
types
.
is_float_dtype
(
dtype
):
return
pd
.
api
.
types
.
is_float_dtype
(
candidate
)
if
pd
.
api
.
types
.
is_bool_dtype
(
dtype
):
return
pd
.
api
.
types
.
is_bool_dtype
(
candidate
)
return
None
def
_is_subtype_of
(
candidate
,
supertype
):
"""
Check whether `candidate` has a subtype of `supertype`, also respecting
pandas types that np.issubdtype is not aware of.
"""
pandas_typecheck
=
_pandas_typecheck
(
candidate
,
supertype
)
if
pandas_typecheck
is
not
None
:
return
pandas_typecheck
return
np
.
issubdtype
(
candidate
,
supertype
)
def
_is_instance_of_type
(
candidate
,
dtype
):
"""
Wrape `isinstance` so that pandas datatypes can be handled.
"""
pandas_typecheck
=
_pandas_typecheck
(
type
(
candidate
),
dtype
)
if
pandas_typecheck
is
not
None
:
return
pandas_typecheck
return
isinstance
(
candidate
,
dtype
)
class
TableImporter
():
class
TableImporter
():
"""
Abstract base class for importing data from tables.
"""
Abstract base class for importing data from tables.
"""
"""
def
__init__
(
self
,
converters
,
obligatory_columns
=
None
,
unique_keys
=
None
,
def
__init__
(
self
,
converters
,
obligatory_columns
=
None
,
unique_keys
=
None
,
datatypes
=
None
,
existing_columns
=
None
):
datatypes
=
None
,
existing_columns
=
None
,
convert_int_to_nullable_int
=
True
):
"""
"""
Parameters
Parameters
----------
----------
...
@@ -234,6 +263,12 @@ class TableImporter():
...
@@ -234,6 +263,12 @@ class TableImporter():
existing_columns : list, optional
existing_columns : list, optional
List of column names that must exist but may have missing (NULL) values
List of column names that must exist but may have missing (NULL) values
convert_int_to_nullable_int : bool, optional
Whether to convert all integer datatypes to ``pandas.Int64Dtype()``
which is nullable, to allow for integer columns with empty fields. If
set to False, a ``DataInConsistencyError`` will be raised in case of
empty fields in integer columns. Default is True.
"""
"""
if
converters
is
None
:
if
converters
is
None
:
...
@@ -250,7 +285,14 @@ class TableImporter():
...
@@ -250,7 +285,14 @@ class TableImporter():
if
datatypes
is
None
:
if
datatypes
is
None
:
datatypes
=
{}
datatypes
=
{}
self
.
datatypes
=
datatypes
self
.
datatypes
=
datatypes
.
copy
()
self
.
convert_int_to_nullable_int
=
convert_int_to_nullable_int
if
convert_int_to_nullable_int
is
True
:
for
key
,
dtype
in
self
.
datatypes
.
items
():
if
pd
.
api
.
types
.
is_integer_dtype
(
dtype
):
self
.
datatypes
[
key
]
=
pd
.
Int64Dtype
()
if
existing_columns
is
None
:
if
existing_columns
is
None
:
existing_columns
=
[]
existing_columns
=
[]
...
@@ -333,22 +375,25 @@ class TableImporter():
...
@@ -333,22 +375,25 @@ class TableImporter():
"""
"""
for
key
,
datatype
in
self
.
datatypes
.
items
():
for
key
,
datatype
in
self
.
datatypes
.
items
():
if
key
not
in
df
.
columns
:
if
key
not
in
df
.
columns
:
# We ignore all datatype definitions that are not present in the
# dataframe.
continue
continue
col_dtype
=
df
.
dtypes
[
key
]
# Check for castable numeric types first: We unconditionally cast int to the default
# Check for castable numeric types first: We unconditionally cast int to the default
# float, because CaosDB does not have different sizes anyway.
# float, because CaosDB does not have different sizes anyway.
col_dtype
=
df
.
dtypes
[
key
]
if
not
strict
and
not
_is_subtype_of
(
col_dtype
,
datatype
):
if
not
strict
and
not
np
.
issubdtype
(
col_dtype
,
datatype
):
# These special cases should be fine.
# These special cases should be fine.
if
((
datatype
==
str
)
if
((
datatype
==
str
)
or
(
np
.
issub
dtype
(
col_dtype
,
np
.
integer
)
or
(
pd
.
api
.
types
.
is_integer_
dtype
(
col_dtype
)
and
np
.
issub
dtype
(
datatype
,
np
.
floating
))
and
pd
.
api
.
types
.
is_float_
dtype
(
datatype
))
):
# NOQA
):
# NOQA
df
[
key
]
=
df
[
key
].
astype
(
datatype
)
df
[
key
]
=
df
[
key
].
astype
(
datatype
)
# Now check each element
# Now check each element
for
idx
,
val
in
df
.
loc
[
pd
.
notnull
(
df
.
loc
[:,
key
]),
key
].
items
():
for
idx
,
val
in
df
.
loc
[
pd
.
notnull
(
df
.
loc
[:,
key
]),
key
].
items
():
if
not
isinstance
(
val
,
datatype
):
if
not
_
is
_
instance
_of_type
(
val
,
datatype
):
msg
=
(
msg
=
(
"
In row no. {rn} and column
'
{c}
'
of file
'
{fi}
'
the
"
"
In row no. {rn} and column
'
{c}
'
of file
'
{fi}
'
the
"
"
datatype was {was} but it should be
"
"
datatype was {was} but it should be
"
...
@@ -483,7 +528,8 @@ class CSVImporter(TableImporter):
...
@@ -483,7 +528,8 @@ class CSVImporter(TableImporter):
**
kwargs
)
**
kwargs
)
applicable_converters
=
{
k
:
v
for
k
,
v
in
self
.
converters
.
items
()
applicable_converters
=
{
k
:
v
for
k
,
v
in
self
.
converters
.
items
()
if
k
in
tmpdf
.
columns
}
if
k
in
tmpdf
.
columns
}
df
=
pd
.
read_csv
(
filename
,
sep
=
sep
,
converters
=
applicable_converters
,
df
=
pd
.
read_csv
(
filename
,
sep
=
sep
,
converters
=
applicable_converters
,
dtype
=
self
.
datatypes
,
**
kwargs
)
**
kwargs
)
except
ValueError
as
ve
:
except
ValueError
as
ve
:
logger
.
warning
(
logger
.
warning
(
...
@@ -497,22 +543,6 @@ class CSVImporter(TableImporter):
...
@@ -497,22 +543,6 @@ class CSVImporter(TableImporter):
return
df
return
df
class
TSVImporter
(
Table
Importer
):
class
TSVImporter
(
CSV
Importer
):
def
read_file
(
self
,
filename
,
**
kwargs
):
def
read_file
(
self
,
filename
,
**
kwargs
):
try
:
return
super
().
read_file
(
filename
,
sep
=
"
\t
"
,
**
kwargs
)
tmpdf
=
pd
.
read_csv
(
filename
,
sep
=
"
\t
"
,
converters
=
self
.
converters
,
**
kwargs
)
applicable_converters
=
{
k
:
v
for
k
,
v
in
self
.
converters
.
items
()
if
k
in
tmpdf
.
columns
}
df
=
pd
.
read_csv
(
filename
,
sep
=
"
\t
"
,
converters
=
self
.
converters
,
**
kwargs
)
except
ValueError
as
ve
:
logger
.
warning
(
"
Cannot parse {}.
\n
{}
"
.
format
(
filename
,
ve
),
extra
=
{
'
identifier
'
:
str
(
filename
),
'
category
'
:
"
inconsistency
"
})
raise
DataInconsistencyError
(
*
ve
.
args
)
df
=
self
.
check_dataframe
(
df
,
filename
)
return
df
This diff is collapsed.
Click to expand it.
unittests/test_table_importer.py
+
57
−
0
View file @
2f9d7ed2
...
@@ -200,6 +200,7 @@ class TableImporterTest(unittest.TestCase):
...
@@ -200,6 +200,7 @@ class TableImporterTest(unittest.TestCase):
assert
df
[
"
float
"
].
dtype
==
int
assert
df
[
"
float
"
].
dtype
==
int
# strict = False by default, so this shouldn't raise an error
# strict = False by default, so this shouldn't raise an error
importer
.
check_datatype
(
df
)
importer
.
check_datatype
(
df
)
print
(
importer
.
datatypes
)
# The types should be correct now.
# The types should be correct now.
assert
df
[
"
a
"
].
dtype
==
pd
.
StringDtype
assert
df
[
"
a
"
].
dtype
==
pd
.
StringDtype
assert
df
[
"
float
"
].
dtype
==
float
assert
df
[
"
float
"
].
dtype
==
float
...
@@ -325,6 +326,62 @@ class CSVImporterTest(TableImporterTest):
...
@@ -325,6 +326,62 @@ class CSVImporterTest(TableImporterTest):
importer
=
CSVImporter
(
**
kwargs
)
importer
=
CSVImporter
(
**
kwargs
)
importer
.
read_file
(
tmp
.
name
)
importer
.
read_file
(
tmp
.
name
)
def
test_gaps_in_int_column
(
self
):
"""
Test for
https://gitlab.com/linkahead/linkahead-advanced-user-tools/-/issues/62:
Datatype confusion when encountering empty values in integer columns.
"""
tmpfile
=
NamedTemporaryFile
(
delete
=
False
,
suffix
=
"
.csv
"
)
with
open
(
tmpfile
.
name
,
'
w
'
)
as
tmp
:
tmp
.
write
(
"
int,int_with_gaps,float
\n
"
"
1,1,1.1
\n
"
"
2,,1.2
\n
"
"
3,3,1.3
\n
"
)
kwargs
=
{
"
datatypes
"
:
{
"
int
"
:
int
,
"
int_with_gaps
"
:
int
,
"
float
"
:
float
},
"
obligatory_columns
"
:
[
"
int
"
],
"
converters
"
:
{}
}
importer
=
CSVImporter
(
**
kwargs
)
assert
importer
.
datatypes
[
"
int
"
]
==
"
Int64
"
assert
importer
.
datatypes
[
"
int_with_gaps
"
]
==
"
Int64
"
assert
importer
.
datatypes
[
"
float
"
]
==
float
df
=
importer
.
read_file
(
tmpfile
.
name
)
# Default is to convert nullable ints
assert
df
[
"
int
"
].
dtype
==
"
Int64
"
assert
df
[
"
int_with_gaps
"
].
dtype
==
"
Int64
"
assert
df
[
"
float
"
].
dtype
==
float
assert
pd
.
isna
(
df
[
"
int_with_gaps
"
][
1
])
# When not converting, empty fields raise errors ...
importer_strict
=
CSVImporter
(
convert_int_to_nullable_int
=
False
,
**
kwargs
)
assert
importer_strict
.
datatypes
[
"
int
"
]
==
int
assert
importer_strict
.
datatypes
[
"
int_with_gaps
"
]
==
int
assert
importer_strict
.
datatypes
[
"
float
"
]
==
float
with
pytest
.
raises
(
DataInconsistencyError
)
as
die
:
df
=
importer_strict
.
read_file
(
tmpfile
.
name
)
print
(
df
)
assert
"
Integer column has NA values in column 1
"
in
str
(
die
.
value
)
# ... except when a nullable datatype is set explicitly
kwargs
[
"
datatypes
"
][
"
int_with_gaps
"
]
=
"
Int64
"
importer_strict
=
CSVImporter
(
convert_int_to_nullable_int
=
False
,
**
kwargs
)
df
=
importer_strict
.
read_file
(
tmpfile
.
name
)
# Now only the one that has been specifically set to Int64 is nullable.
assert
df
[
"
int
"
].
dtype
==
int
assert
df
[
"
int_with_gaps
"
].
dtype
==
"
Int64
"
assert
df
[
"
float
"
].
dtype
==
float
class
TSVImporterTest
(
TableImporterTest
):
class
TSVImporterTest
(
TableImporterTest
):
def
test_full
(
self
):
def
test_full
(
self
):
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment