diff --git a/CHANGELOG.md b/CHANGELOG.md index 1f790368430864301ceae168930a18f63c0a89fc..9036ad3c8fff8eb873e75221cdd0c0bdb2a92498 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -16,7 +16,6 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0 integration of the crawler if the `pycaosdb.ini` contains a `[caoscrawler]` with `create_crawler_status_records=True`. - ### Changed ### ### Deprecated ### @@ -30,6 +29,8 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0 ### Documentation ### +- Expanded documentation, also has (better) tutorials now. + ## [0.5.0] - 2023-03-28 ## (Florian Spreckelsen) diff --git a/src/caoscrawler/converters.py b/src/caoscrawler/converters.py index 80a3728ce5b1f413d2bdd674b26a7dca1122eef5..dcb5d5fe12ac12806c40b18f4b5d3e0d15a0e87d 100644 --- a/src/caoscrawler/converters.py +++ b/src/caoscrawler/converters.py @@ -115,10 +115,11 @@ class ConverterValidationError(Exception): def create_path_value(func): - """decorator for create_values functions that adds a value containing the path + """Decorator for create_values functions that adds a value containing the path. should be used for StructureElement that are associated with file system objects that have a path, like File or Directory. + """ def inner(self, values: GeneralStore, element: StructureElement): @@ -155,22 +156,28 @@ def replace_variables(propvalue, values: GeneralStore): def handle_value(value: Union[dict, str, list], values: GeneralStore): - """ - determines whether the given value needs to set a property, be added to an existing value (create a list) or + """Determine whether the given value needs to set a property, be added to an existing value (create a list) or add as an additional property (multiproperty). Variable names (starting with a "$") are replaced by the corresponding value stored in the `values` GeneralStore. - Parameters: - - value: if str, the value to be interpreted. E.g. "4", "hallo" or "$a" etc. - if dict, must have keys "value" and "collection_mode". The returned tuple is directly - created from the corresponding values. - if list, each element is checked for replacement and the resulting list will be used - as (list) value for the property - Returns a tuple: - - the final value of the property; variable names contained in `values` are replaced. - - the collection mode (can be single, list or multiproperty) +Parameters +---------- + +value: + - if str, the value to be interpreted. E.g. "4", "hallo" or "$a" etc. + - if dict, must have keys "value" and "collection_mode". The returned tuple is directly + created from the corresponding values. + - if list, each element is checked for replacement and the resulting list will be used + as (list) value for the property + +Returns +------- + +out: tuple + - the final value of the property; variable names contained in `values` are replaced. + - the collection mode (can be single, list or multiproperty) """ # @review Florian Spreckelsen 2022-05-13 @@ -302,9 +309,7 @@ def create_records(values: GeneralStore, records: RecordStore, def_records: dict class Converter(object, metaclass=ABCMeta): - """ - Converters treat StructureElements contained in the hierarchical sturcture. - """ + """Converters treat StructureElements contained in the hierarchical sturcture.""" def __init__(self, definition: dict, name: str, converter_registry: dict): self.definition = definition @@ -535,9 +540,7 @@ class DirectoryConverter(Converter): class SimpleFileConverter(Converter): - """ - Just a file, ignore the contents. - """ + """Just a file, ignore the contents.""" def typecheck(self, element: StructureElement): return isinstance(element, File) @@ -568,9 +571,7 @@ class FileConverter(SimpleFileConverter): class MarkdownFileConverter(SimpleFileConverter): - """ - reads the yaml header of markdown files (if a such a header exists). - """ + """Read the yaml header of markdown files (if a such a header exists).""" def create_children(self, generalStore: GeneralStore, element: StructureElement): # TODO: See comment on types and inheritance @@ -604,7 +605,7 @@ class MarkdownFileConverter(SimpleFileConverter): def convert_basic_element(element: Union[list, dict, bool, int, float, str, None], name=None, msg_prefix=""): - """converts basic Python objects to the corresponding StructureElements """ + """Convert basic Python objects to the corresponding StructureElements""" if isinstance(element, list): return ListElement(name, element) elif isinstance(element, dict): @@ -628,12 +629,16 @@ def convert_basic_element(element: Union[list, dict, bool, int, float, str, None def validate_against_json_schema(instance, schema_resource: Union[dict, str]): - """validates given ``instance`` against given ``schema_resource``. + """Validate given ``instance`` against given ``schema_resource``. + +Parameters +---------- - Args: - instance: instance to be validated, typically ``dict`` but can be ``list``, ``str``, etc. - schema_resource: Either a path to the JSON file containing the schema or a ``dict`` with - the schema +instance: + Instance to be validated, typically ``dict`` but can be ``list``, ``str``, etc. + +schema_resource: + Either a path to the JSON file containing the schema or a ``dict`` with the schema. """ if isinstance(schema_resource, dict): schema = schema_resource @@ -752,15 +757,19 @@ class YAMLFileConverter(SimpleFileConverter): def match_name_and_value(definition, name, value): - """ - takes match definitions from the definition argument and applies regular expressiion to name - and possibly value + """Take match definitions from the definition argument and apply regular expression to name and + possibly value one of the keys 'match_name' and "match' needs to be available in definition 'match_value' is optional - Returns None, if match_name or match lead to no match. Otherwise, returns a dictionary with the - matched groups, possibly including matches from using match_value +Returns +------- + +out: + None, if match_name or match lead to no match. Otherwise, returns a dictionary with the + matched groups, possibly including matches from using match_value + """ if "match_name" in definition: if "match" in definition: @@ -796,11 +805,11 @@ def match_name_and_value(definition, name, value): class _AbstractScalarValueElementConverter(Converter): - """ - A base class for all converters that have a scalar value that can be matched using a regular + """A base class for all converters that have a scalar value that can be matched using a regular expression. values must have one of the following type: str, bool, int, float + """ default_matches = { @@ -840,15 +849,14 @@ class _AbstractScalarValueElementConverter(Converter): return match_name_and_value(self.definition, element.name, element.value) def _typecheck(self, element: StructureElement, allowed_matches: dict): - """ - returns whether the type of StructureElement is accepted. + """Return whether the type of StructureElement is accepted. - Parameters: - element: StructureElement, the element that is checked - allowed_matches: Dict, a dictionary that defines what types are allowed. It must have the - keys 'accept_text', 'accept_bool', 'accept_int', and 'accept_float'. + Parameters: element: StructureElement, the element that is checked allowed_matches: Dict, a + dictionary that defines what types are allowed. It must have the keys 'accept_text', + 'accept_bool', 'accept_int', and 'accept_float'. returns: whether or not the converter allows the type of element + """ if (bool(allowed_matches["accept_text"]) and isinstance(element, TextElement)): return True @@ -995,14 +1003,14 @@ class DictListElementConverter(ListElementConverter): class TableConverter(Converter): - """ - This converter reads tables in different formats line by line and + """This converter reads tables in different formats line by line and allows matching the corresponding rows. The subtree generated by the table converter consists of DictElements, each being a row. The corresponding header elements will become the dictionary keys. The rows can be matched using a DictElementConverter. + """ @abstractmethod def get_options(self): @@ -1100,12 +1108,12 @@ class CSVTableConverter(TableConverter): class DateElementConverter(TextElementConverter): - """ - allows to convert different text formats of dates to Python date objects. + """allows to convert different text formats of dates to Python date objects. The text to be parsed must be contained in the "date" group. The format string can be supplied under "dateformat" in the Converter definition. The library used is datetime so see its documentation for information on how to create the format string. + """ def match(self, element: StructureElement): diff --git a/src/caoscrawler/crawl.py b/src/caoscrawler/crawl.py index cadd7798d93b94bf4f11c76d18fe8431e61c5d0a..7b9119caa1cd4dd4623a9141de4a70abb4da5946 100644 --- a/src/caoscrawler/crawl.py +++ b/src/caoscrawler/crawl.py @@ -91,20 +91,22 @@ yaml.SafeLoader.add_constructor("!macro", macro_constructor) def check_identical(record1: db.Entity, record2: db.Entity, ignore_id=False): - """ - This function uses compare_entities to check whether to entities are identical - in a quite complex fashion: - - If one of the entities has additional parents or additional properties -> not identical - - If the value of one of the properties differs -> not identical - - If datatype, importance or unit are reported different for a property by compare_entities - return "not_identical" only if these attributes are set explicitely by record1. - Ignore the difference otherwise. - - If description, name, id or path appear in list of differences -> not identical. - - If file, checksum, size appear -> Only different, if explicitely set by record1. - - record1 serves as the reference, so datatype, importance and unit checks are carried - out using the attributes from record1. In that respect, the function is not symmetrical - in its arguments. + """Check whether two entities are identical. + +This function uses compare_entities to check whether two entities are identical +in a quite complex fashion: + +- If one of the entities has additional parents or additional properties -> not identical +- If the value of one of the properties differs -> not identical +- If datatype, importance or unit are reported different for a property by compare_entities + return "not_identical" only if these attributes are set explicitely by record1. + Ignore the difference otherwise. +- If description, name, id or path appear in list of differences -> not identical. +- If file, checksum, size appear -> Only different, if explicitely set by record1. + +record1 serves as the reference, so datatype, importance and unit checks are carried +out using the attributes from record1. In that respect, the function is not symmetrical +in its arguments. """ comp = compare_entities(record1, record2) diff --git a/src/caoscrawler/identifiable_adapters.py b/src/caoscrawler/identifiable_adapters.py index eb9333f73a79d5dd0dedc47b570b2934d4baf339..241685b5cfe9d87acad16e0c6a871d9ea6ad79e3 100644 --- a/src/caoscrawler/identifiable_adapters.py +++ b/src/caoscrawler/identifiable_adapters.py @@ -66,29 +66,29 @@ def convert_value(value: Any): class IdentifiableAdapter(metaclass=ABCMeta): - """ - Base class for identifiable adapters. + """Base class for identifiable adapters. + +Some terms: - Some terms: - - Registered identifiable is the definition of an identifiable which is: - - A record type as the parent - - A list of properties - - A list of referenced by statements +- Registered identifiable is the definition of an identifiable which is: + - A record type as the parent + - A list of properties + - A list of referenced by statements +- Identifiable is the concrete identifiable, e.g. the Record based on + the registered identifiable with all the values filled in. +- Identified record is the result of retrieving a record based on the + identifiable from the database. - - Identifiable is the concrete identifiable, e.g. the Record based on - the registered identifiable with all the values filled in. +General question to clarify: - - Identified record is the result of retrieving a record based on the - identifiable from the database. +- Do we want to support multiple identifiables per RecordType? +- Current implementation supports only one identifiable per RecordType. - General question to clarify: - Do we want to support multiple identifiables per RecordType? - Current implementation supports only one identifiable per RecordType. +The list of referenced by statements is currently not implemented. - The list of referenced by statements is currently not implemented. +The IdentifiableAdapter can be used to retrieve the three above mentioned objects (registred +identifiabel, identifiable and identified record) for a Record. - The IdentifiableAdapter can be used to retrieve the three above mentioned objects (registred - identifiabel, identifiable and identified record) for a Record. """ @staticmethod @@ -426,11 +426,11 @@ class CaosDBIdentifiableAdapter(IdentifiableAdapter): # TODO: don't store registered identifiables locally def __init__(self): - self._registered_identifiables = dict() + self._registered_identifiables = {} def load_from_yaml_definition(self, path: str): """Load identifiables defined in a yaml file""" - with open(path, 'r') as yaml_f: + with open(path, 'r', encoding="utf-8") as yaml_f: identifiable_data = yaml.safe_load(yaml_f) for key, value in identifiable_data.items(): diff --git a/src/caoscrawler/scanner.py b/src/caoscrawler/scanner.py index ff6156aed3bde639435219a705d6d7d2124f7f38..400e182bec9e562f63c9c57245915523c3fc1355 100644 --- a/src/caoscrawler/scanner.py +++ b/src/caoscrawler/scanner.py @@ -26,7 +26,8 @@ """ This is the scanner, the original "_crawl" function from crawl.py. -This is just the functionality, that extracts data from the file system. + +This is just the functionality that extracts data from the file system. """ from __future__ import annotations @@ -234,18 +235,20 @@ def scanner(items: list[StructureElement], restricted_path: Optional[list[str]] = None, crawled_data: Optional[list[db.Record]] = None, debug_tree: Optional[DebugTree] = None): - """ - Crawl a list of StructureElements and apply any matching converters. + """Crawl a list of StructureElements and apply any matching converters. Formerly known as "_crawl". items: structure_elements (e.g. files and folders on one level on the hierarchy) + converters: locally defined converters for - treating structure elements. A locally defined converter could be - one that is only valid for a specific subtree of the originally - cralwed StructureElement structure. + treating structure elements. A locally defined converter could be + one that is only valid for a specific subtree of the originally + cralwed StructureElement structure. + general_store and record_store: This recursion of the crawl function should only operate on copies of the global stores of the Crawler object. + restricted_path: optional, list of strings, traverse the data tree only along the given path. For example, when a directory contains files a, b and c and b is given in restricted_path, a and c will be ignroed by the crawler. @@ -253,6 +256,7 @@ def scanner(items: list[StructureElement], normal. The first element of the list provided by restricted_path should be the name of the StructureElement at this level, i.e. denoting the respective element in the items argument. + """ # This path_found variable stores wether the path given by restricted_path was found in the # data tree diff --git a/src/doc/_static/assets/scifolder_tutorial.tar.gz b/src/doc/_static/assets/scifolder_tutorial.tar.gz new file mode 100644 index 0000000000000000000000000000000000000000..7c06dea70f95630278d17f2cac5174aa9e208509 Binary files /dev/null and b/src/doc/_static/assets/scifolder_tutorial.tar.gz differ diff --git a/src/doc/conf.py b/src/doc/conf.py index 2ce47193e35fd9e0ba072ee8a3c047194715de2e..64ed869319eaab128e39f4a59d4c880b1e94a441 100644 --- a/src/doc/conf.py +++ b/src/doc/conf.py @@ -100,7 +100,7 @@ html_theme = "sphinx_rtd_theme" # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". -html_static_path = [] # ['_static'] +html_static_path = ['_static'] # ['_static'] # Custom sidebar templates, must be a dictionary that maps document names # to template names. diff --git a/src/doc/converters.rst b/src/doc/converters.rst index 95676627d95a5cd6bbca5208b67f9689fffb6806..98849609f0cab2afba037a82fe4ae6802caa5956 100644 --- a/src/doc/converters.rst +++ b/src/doc/converters.rst @@ -483,6 +483,7 @@ Let's formulate that using `create_records` (again, `dir_name` is constant here) keys_modified = create_records(values, records, record_def) + Debugging ========= diff --git a/src/doc/getting_started/helloworld.md b/src/doc/getting_started/helloworld.md new file mode 100644 index 0000000000000000000000000000000000000000..723fb88d08047350d9f4bc3d3d2bd84ec9b27efb --- /dev/null +++ b/src/doc/getting_started/helloworld.md @@ -0,0 +1,95 @@ +# Hello World + +## Setting up the data model ## + +For this example, we need a very simple data model. You can insert it into your +CaosDB instance by saving the following to a file called `model.yml`: + +```yaml +HelloWorld: + recommended_properties: + time: + datatype: DATETIME + note: + datatype: TEXT +``` +and insert the model using +```sh +python -m caosadvancedtools.models.parser model.yml --sync +``` + +Let's look first at how the CaosDB Crawler synchronizes Records that are +created locally with those that might already exist on the CaosDB server. + +For this you need a file called `identifiables.yml` with this content: +```yaml +HelloWorld: + - name +``` + +## Synchronizing data ## + +Then you can do the following interactively in (I)Python. But we recommend that you +copy the code into a script and execute it to spare yourself typing. + +```python +import caosdb as db +from datetime import datetime +from caoscrawler import Crawler, SecurityMode +from caoscrawler.identifiable_adapters import CaosDBIdentifiableAdapter + + +# Create a Record that will be synced +hello_rec = db.Record(name="My first Record") +hello_rec.add_parent("HelloWorld") +hello_rec.add_property(name="time", value=datetime.now().isoformat()) + +# Create a Crawler instance that we will use for synchronization +crawler = Crawler(securityMode=SecurityMode.UPDATE) +# This defines how Records on the server are identified with the ones we have locally +identifiables_definition_file = "identifiables.yml" +ident = CaosDBIdentifiableAdapter() +ident.load_from_yaml_definition(identifiables_definition_file) +crawler.identifiableAdapter = ident + +# Here we synchronize the Record +inserts, updates = crawler.synchronize(commit_changes=True, unique_names=True, + crawled_data=[hello_rec]) +print(f"Inserted {len(inserts)} Records") +print(f"Updated {len(updates)} Records") +``` + +Now, start by executing the code. What happens? The output suggests that one +entity was inserted. Please go to the web interface of your instance and have a +look. You can use the query `FIND HelloWorld`. You should see a brand new +Record with a current time stamp. + +So, how did this happen? In our script, we created a "HelloWorld" Record and +gave it to the Crawler. The Crawler checks how "HelloWorld" Records are +identified. We told the Crawler with our `identifiables.yml` that it should +use the name. The Crawler thus checked whether a "HelloWorld" Record with our +name exists on the Server. It did not. Therefore the Record that we provided +was inserted in the Server. + +## Running the synchronization again ## + +Now, run the script again. What happens? There is an update! This time, a +Record with the required name existed. Thus the "time" Property of the existing Record was updated. + +The Crawler does not touch Properties that are not present in the local data. +Thus, if you add a "note" Property to the Record in the server (e.g. with the +edit mode in the web interface) and run the script again, this Property is +kept unchanged. This means that you can extend Records that were created using +the Crawler. + +Note that if you change the name of the "HelloWorld" Record in the script and +run it again, a new Record is inserted by the Crawler. This is because in the `identifiables.yml` we +told the Crawler that it should use the *name* to check whether a "HelloWorld" Record +already exists in the Server. + +So far, you saw how the Crawler handles synchronization in a very simple +scenario. In the following tutorials, you will learn how this looks like if +there are multiple connected Records involved which may not simply be +identified using the name. Also, we created the Record "manually" in this +example while the typical use case is to create it automatically from some files +or directories. How this is done will also be shown in the following chapters. diff --git a/src/doc/getting_started/helloworld.rst b/src/doc/getting_started/helloworld.rst deleted file mode 100644 index ef4a1398322b59d7983b7dff384534cfa501b660..0000000000000000000000000000000000000000 --- a/src/doc/getting_started/helloworld.rst +++ /dev/null @@ -1,5 +0,0 @@ - -Prerequisites -))))))))))))) - -TODO Describe the smallest possible crawler run diff --git a/src/doc/getting_started/prerequisites.md b/src/doc/getting_started/prerequisites.md new file mode 100644 index 0000000000000000000000000000000000000000..06e33e922214786f1f48e9f210a297869c259379 --- /dev/null +++ b/src/doc/getting_started/prerequisites.md @@ -0,0 +1,30 @@ +# Prerequisites + +The CaosDB Crawler is a utility to create CaosDB Records from some data +structure, e.g. files, and synchronize these Records with a CaosDB server. + +Thus two prerequisites to use the CaosDB Crawler are clear: +1. You need access to a running CaosDB instance. See the [documentation](https://docs.indiscale.com/caosdb-deploy/index.html). +2. You need access to the data that you want to insert, i.e. the files or + the table from which you want to create Records. + +Make sure that you configured your Python client to speak +to the correct CaosDB instance (see [configuration docs](https://docs.indiscale.com/caosdb-pylib/configuration.html)). + +We would like to make another prerequisite explicit that is related to the first +point above: You need a data model. Typically, if you want to insert data into +an actively used CaosDB instance, there is a data model already. However, if +there is no data model yet, you can define one using the +[edit mode](https://docs.indiscale.com/caosdb-webui/tutorials/edit_mode.html) +or the [YAML format](https://docs.indiscale.com/caosdb-advanced-user-tools/yaml_interface.html). +We will provide small data models for the examples to come. + + +Also it is recommended, and necessary for the following chapters, that you have +some experience with the CaosDB Python client. +If you don't, you can start with +the [tutorials](https://docs.indiscale.com/caosdb-pylib/tutorials/index.html) + +If you want to write CaosDB Crawler configuration files (so called CFoods), it helps if you know +regular expressions. If regular expressions are new to you, don't worry, we keep it simple in this +tutorial. diff --git a/src/doc/getting_started/prerequisites.rst b/src/doc/getting_started/prerequisites.rst deleted file mode 100644 index dc8022b6cad99a8508f19f47dc01c601fb676c5b..0000000000000000000000000000000000000000 --- a/src/doc/getting_started/prerequisites.rst +++ /dev/null @@ -1,6 +0,0 @@ - -Prerequisites -))))))))))))) - -TODO Describe what you need to actually do a crawler run: data, CaosDB, ... - diff --git a/src/doc/index.rst b/src/doc/index.rst index d319bf4d24a05a3033b1ae5bbf80433c5ef3646b..20f335f7885971b65caf91dfe723f867e46b8595 100644 --- a/src/doc/index.rst +++ b/src/doc/index.rst @@ -31,7 +31,7 @@ The hierarchical structure can be for example a file tree. However it can be also something different like the contents of a JSON file or a file tree with JSON files. -This documentation helps you to :doc:`get started<README_SETUP>`, explains the most important +This documentation helps you to :doc:`get started<getting_started/index>`, explains the most important :doc:`concepts<concepts>` and offers a range of :doc:`tutorials<tutorials/index>`. @@ -40,4 +40,3 @@ Indices and tables * :ref:`genindex` * :ref:`modindex` -* :ref:`search` diff --git a/src/doc/macros.rst b/src/doc/macros.rst index 7685731d35afab51074bb4d12c51ede0a7ba1b75..5d8a411607af223c5b8d65b1553e710553d998f0 100644 --- a/src/doc/macros.rst +++ b/src/doc/macros.rst @@ -24,7 +24,7 @@ Macros highly facilitate the writing of complex :doc:`CFoods<cfood>`. Consider t This example just inserts a file called ``README.md`` contained in Folder ``ExpreimentalData/`` into CaosDB, assigns the parent (RecordType) ``MarkdownFile`` and allows for later referencing this entity within the cfood. As file objects are created in the cfood specification using the ``records`` section with the special role ``File``, defining and using many files can become very cumbersome and make the cfood file difficult to read. The same version using cfood macros could be defined as follows: - + .. _example_files_2: .. code-block:: yaml @@ -79,7 +79,7 @@ The expanded version of `ExperimentalData` will look like: type: SimpleFile type: Directory -This :ref:`example<_example_files_2>` can also be found in the macro unit tests (see :func:`unittests.test_macros.test_documentation_example_2`). +This :ref:`example<example_files_2>` can also be found in the macro unit tests (see :func:`unittests.test_macros.test_documentation_example_2`). Complex Example @@ -117,7 +117,7 @@ of macro variable substitutions that generate crawler variable substitutions: Simulation: $recordtype: +$File -The expanded version of :ref:`example<_example_1>` can be seen in :ref:`example<_example_1_expanded>`. +The expanded version of :ref:`example<example_1>` can be seen in :ref:`example<example_1_expanded>`. .. _example_1_expanded: @@ -140,7 +140,7 @@ The expanded version of :ref:`example<_example_1>` can be seen in :ref:`example< type: SimpleFile type: Directory -This :ref:`example<_example_1>` can also be found in the macro unit tests (see :func:`unittests.test_macros.test_documentation_example_1`). +This :ref:`example<example_1>` can also be found in the macro unit tests (see :func:`unittests.test_macros.test_documentation_example_1`). @@ -173,7 +173,7 @@ To use the same macro multiple times in the same yaml node, lists can be used: - {} # <- This is the third one, just using default arguments -This :ref:`example<_example_multiple>` is taken from the macro unit tests (see :func:`unittests.test_macros.test_use_macro_twice`). +This :ref:`example<example_multiple>` is taken from the macro unit tests (see :func:`unittests.test_macros.test_use_macro_twice`). The example will be expanded to: diff --git a/src/doc/tutorials/example.rst b/src/doc/tutorials/example.rst deleted file mode 100644 index a1adee7008f3b004e6b441573798b2e57f9a4384..0000000000000000000000000000000000000000 --- a/src/doc/tutorials/example.rst +++ /dev/null @@ -1,108 +0,0 @@ -Example CFood -============= - -Let's walk through an example cfood that makes use of a simple directory structure. We assume -the structure which is supposed to be crawled to have the following form: - -.. code-block:: - - ExperimentalData/ - - 2022_ProjectA/ - - 2022-02-17_TestDataset/ - file1.dat - file2.dat - ... - ... - - 2023_ProjectB/ - ... - - ... - -This file structure conforms to the one described in our article "Guidelines for a Standardized Filesystem Layout for Scientific Data" (https://doi.org/10.3390/data5020043). As a simplified example -we want to write a crawler that creates "Project" and "Measurement" records in CaosDB and set -some reasonable properties stemming from the file and directory names. Furthermore, we want -to link the ficticious dat files to the Measurement records. - -Let's first clarify the terms we are using: - -.. code-block:: - - ExperimentalData/ <--- Category level (level 0) - - 2022_ProjectA/ <--- Project level (level 1) - - 2022-02-17_TestDataset/ <--- Activity / Measurement level (level 2) - file1.dat <--- Files on level 3 - file2.dat - ... - ... - - 2023_ProjectB/ <--- Project level (level 1) - ... - - ... - -So we can see, that the three-level folder structure, described in the paper is replicated. -We are using the term "Activity level" here, instead of the terms used in the article, as -it can be used in a more general way. - -The following yaml cfood is able to match and insert / update the records accordingly: - - -.. code-block:: yaml - - - ExperimentalData: # Converter for the category level - type: Directory - match: ^ExperimentalData$ # The name of the matched folder is given here! - - - subtree: - - project_dir: # Converter for the project level - type: Directory - match: (?P<date>.*?)_(?P<identifier>.*) - - records: - Project: - parents: - - Project - date: $date - identifier: $identifier - - - subtree: - - measurement: # Converter for the activity / measurement level - type: Directory - match: (?P<date>[0-9]{4,4}-[0-9]{2,2}-[0-9]{2,2})(_(?P<identifier>.*))? - - records: - Measurement: - date: $date - identifier: $identifier - project: $Project - - - subtree: - - datFile: # Converter for the files - type: SimpleFile - match: ^(.*)\.dat$ # The file extension is matched using a regular expression. - - records: - datFileRecord: - role: File - path: $datFile - file: $datFile - Measurement: - output: +$datFileRecord - - -Here, we provide a detailled explanation of the specific parts of the yaml definition: - -.. image:: example_crawler.svg - diff --git a/src/doc/tutorials/example_crawler.svg b/src/doc/tutorials/example_crawler.svg index b4e9e18f5a6e37c920bbf239eb4660898366b9b9..d7af6fdaf37b550a9cc2adca6c7d7e411d3a70ad 100644 --- a/src/doc/tutorials/example_crawler.svg +++ b/src/doc/tutorials/example_crawler.svg @@ -1,20 +1,24 @@ <?xml version="1.0" encoding="UTF-8" standalone="no"?> -<!-- Created with Inkscape (http://www.inkscape.org/) --> - <svg - width="208.60146mm" - height="211.33736mm" - viewBox="0 0 208.60146 211.33736" + xmlns:dc="http://purl.org/dc/elements/1.1/" + xmlns:cc="http://creativecommons.org/ns#" + xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" + xmlns:svg="http://www.w3.org/2000/svg" + xmlns="http://www.w3.org/2000/svg" + xmlns:xlink="http://www.w3.org/1999/xlink" + xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd" + xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape" + width="221.24644mm" + height="211.33792mm" + viewBox="0 0 221.24645 211.33792" version="1.1" id="svg348" xml:space="preserve" - inkscape:version="1.2.2 (b0a8486541, 2022-12-01)" - sodipodi:docname="example_crawler.svg" - xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape" - xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd" - xmlns:xlink="http://www.w3.org/1999/xlink" - xmlns="http://www.w3.org/2000/svg" - xmlns:svg="http://www.w3.org/2000/svg"><sodipodi:namedview + inkscape:version="1.0.2 (e86c870879, 2021-01-15)" + sodipodi:docname="example_crawler.svg"><metadata + id="metadata57"><rdf:RDF><cc:Work + rdf:about=""><dc:format>image/svg+xml</dc:format><dc:type + rdf:resource="http://purl.org/dc/dcmitype/StillImage" /><dc:title></dc:title></cc:Work></rdf:RDF></metadata><sodipodi:namedview id="namedview350" pagecolor="#ffffff" bordercolor="#666666" @@ -25,15 +29,20 @@ inkscape:deskcolor="#d1d1d1" inkscape:document-units="mm" showgrid="false" - inkscape:zoom="0.37500793" - inkscape:cx="286.6606" - inkscape:cy="503.98934" - inkscape:window-width="1680" - inkscape:window-height="981" + inkscape:zoom="0.75001586" + inkscape:cx="430.07823" + inkscape:cy="364.2107" + inkscape:window-width="1920" + inkscape:window-height="1135" inkscape:window-x="0" - inkscape:window-y="32" + inkscape:window-y="0" inkscape:window-maximized="1" - inkscape:current-layer="layer1" /><defs + inkscape:current-layer="layer1" + inkscape:document-rotation="0" + fit-margin-right="5" + fit-margin-top="0" + fit-margin-left="0" + fit-margin-bottom="0" /><defs id="defs345" /><g inkscape:label="Ebene 1" inkscape:groupmode="layer" @@ -42,1228 +51,7 @@ width="180.18124" height="209.55" preserveAspectRatio="none" - xlink:href=" -eJzs3Wd0VWX69/HvSS8nhZBiAmnEQBKEPyBFBBXpPkoRFM0EZqQ5IiOOMwqCqIgiOqA40hQGkVFk -pKkoCAgKCCJGYKgDY0JCIIQSAuk953nBeOSYwDnpkfw+a7FWsu927eLyyr3vvbchLzfHhIjI/5w9 -e5abbrqpvsNoNHS8pSboOpIbkUFJqoiIiIg0NHb1HYCIiIiIyK8pSRURERGRBkdJqoiIiIg0OAaT -yVStNanZ2dnXLffw8KhO9yIiIiLSCGkmVUREREQaHCWpIiIiItLgKEkVERERkQbHwZZKubm57Nmz -h2PHjuHp6cnw4cNrOy4RERERacRsSlLt7OwICgqiqKiI9PT02o5JRERERBo5m273u7q6EhUVRVBQ -UG3HIyIiIiKiNakiIiIi0vAoSRURERGRBkdJqoiIiIg0OEpSRURERKTBUZIqIiIiIg2OwWQymaxV -Wr16NadPn6aoqIiioiKMRiOenp6MGjWK7Ozs67b18PCosWBFREREpHGwKUm9HiWpIiIiIlLTdLtf -RERERBocJakiIiIi0uAoSRURERGRBkdJqoiIiIg0OEpSRURERKTBUZIqIiIiIg2OktSrZCQfZ+Xo -nqQnHK6X8U2mskq3KSksYM24/qwZ158PHrqVtEN7aiGyK6oSn4iIiEhVONhSKTU1la1bt3LhwgWc -nZ3p1asX0dHRNg+y78O/c/SLD3FwdTVv849qT89Jf698xLXIrYkfoV174940oM7HvnTyv8S/P5u+ -Ly6qVDsHZxeGLtwIwBcTYyuss2Zcf0oKCzDY2WP0C6TN/aMJ7nx3ncQnIiIiUhVWk1STycSOHTvo -1asXQUFBnDhxghUrVvDkk09W6kX9rfo9SKeRE6sVbG1z8fKhy5gp9TJ2QdblWu2/93MLaNoimvPH -/s32ORMpKSogvPs9Nrev7fhERERErmY1STUYDMTG/jJDFxERQUBAAOfOnauxr0ltm/1XvJtH0O7h -x82/+0W2ofWgR4ArM4Qx9w3n+KaVZKWdxC+yDd3GT8fZswkAZaWlHFy9iKSdG8Bkwj+6A51HTcLR -1R2AvIzzfP3aBHpPXUj80r9x5sBumoRE0nfaYgA2TxtL9rlTAOSmn2Xgm2vwDo4A4OyRHzm6bhkl -hfnkXEij88iJ7FnyGp5BofR5/h2bxv9iYixdH3uBw58sIe3QDxj9m3HXX/6Gx03BFGRmsHnaWAqy -LlGUm82acf0B8AgINsd3+VQih9b+g4uJRynKzaJZ++7c9sep2Ds6V+5AGwz4R7en0yNPs2/5XHOS -er3+ayq+kpISOnXqRLt27Vi6dGnl4hYREZFGp9JrUsvKyrh06RK+vr41FsRtY5/jv1vWcOnkT6Tu -30XO+VRiBoywqJO4bR09np7Ng4u+ws7BkR8/mGMuO7ByIeeO/sh9sz7m/rmf4+RmZN/yty3a519K -59u3niWkc0+GLviS7hNmmMv6TlvM0IUbGbpwIy6ePuXiO3NgN51HT8Y3sg2HPnmP+17/iPSEw+Sm -n7V5/N0Lp3HL/aO5f+46XL2bcmjtEuDK7O3AOWvoMnYK/tHtzXH8nAACZKelENatPwPnrGHIgi+5 -fDqR/25eXcWjDc3adSP7bArFeTlW+6+p+AoKCkhMTOTo0aNVjltEREQaj0onqbt376ZFixZ4e3tX -qt3xTStZ8ftu5n95GRfMZS5ePnR65Bm+WziNH9+fze2Pv4TBzt6i/S33j8K1iR92Do5E3D2I1H07 -zWXHNnxEh7gncXRxA4OBNkPHcip+m0X7vIzztBk6htCufXBwccXNx9/m2L2ah+MdHIFnYCjNOnTH -2bMJ7r6BZJ87bfP47X83gaYtonH28Cbs9n5kpibZPH5w57sJ7ngXpUWFZJ5OxDMwlAs/HbK5/a85 -uhmxd3Qm//LFGunflvZGo5Hk5GS2b99e5bhFRESk8bDpwamfJSUlsXfvXkaNGlXpgVr1G3bdNamh -t/XihyUz8WvZFp+wVtftyzs4gsKcTAAKsy5RlJ/LrnnPW9Rx9vC0+N3BxY2bWneqdNxXMxjK/2zr -+HYOvxxqV++mlBYX2TxuXsZ5fljyGsX5eTS9OQaDnT0l/5sFrYqivBxKiwtx9fGrkf5tbe/jU36W -WkRERKQiNiepZ86c4dNPP+V3v/sdRqOxxgM5sOpdQm7rTdrBPZz7zz4Cojtcs252WgpG/2YAOHt4 -4+jiRp8X3sHdN7DG47Kmpsa3d3SiMLvih5N2vDmR6HvjCO3aB7iy9CFlz9fl6hnsDJhKS62OdXrv -DjyDwq7M/NrYf03El5mZiaurK05OTlZjFBERkcbNptv9p06d4uOPP2bYsGEEBNT865kyko5xYsd6 -Ov7+L9w+7gV2zXue4oI8izrJ322mtLiQorwcDqx8h8he918pMBho1fdBvl80g6L/zd4VZGaQkXSs -xuOsUA2N7x0cweWUBHLT0670kXXJXJZzIQ2D3ZVTlZV2kuObV1XYh9EviNP7vgWTyTzT/Gvnj+1n -7z/fpH3s+Er1X934cnNzCQsLo0ePHtc8BiIiIiI/szqTWlxczAcffIDBYOBf//oXpf+bqQsKCmL4 -8OE2D3R80yoSd3xh/t296U0MmL2SstISds6dSpcxk3F0deemWzrT/NY7iV/6N24fN+2XQJ1dWD/x -dxTmXCb8jnstHqxqHzeBQ2v+wYZn48BgwMnNSNsHHsUnPMrm+KqjJsY3+jejQ9wENk59BHsnF9x9 -A+n13Hzs7O3pMmYyB9csYv+KeXiHRNKq7zBS9mwt10fbBx5l+5sTWfXHvgTE3Mqdf37NXLZ15hMY -DODW9CZuG/ucxXtSbem/uvE5OTkRGhpKZGSkzcdEREREGi+DyWQyVaeD7Ozs65bXxGuqvpgYy60j -niKwTedq9yUiIiIiDd9v6LOo1cqlRUREROQ35DeUpIqIiIhIY/GbuN0vIiIiIo1Lpd6TWhWvX/1y -0QpMql6OLCIiIiI3IN3uFxEREZEGR0mqiIiIiDQ4v6kk1WQqq+8QatWBAwcIDAwkPj6+XsYvK7ux -j6+IiIj8dtiUpKakpLBs2TLefPNN5syZw3fffVfbcZVz6eR/+Wr6Y3U+bk0IDw8nICCAoKAgunbt -ymeffVZhvcDAQIYOHUrz5s3rOEI4ePAg/fr1q/NxRURERCpi04NTSUlJ9OrVi+bNm5Oens67775L -UFAQYWFhtRzeLwqyKv5u/G/Fhg0b6NChA7t27SI2Npa8vDxiY2Mt6vj7+zNv3rx6iS89Pb1exhUR -ERGpiE0zqXfddZd5ds/X15fg4GDy8/NrNbCfFWRmsO6poXz71rOc/89+1ozrz5px/dk8bSwAl08l -svqPfS2WAhTlZvPxqB6UFhcCV75YdWLHer587g98PKoHX898gsKrvj1fVlrKvz9eyCdPDOCTP93H -rvkvUJyfaxFHSUkJ7du3Z+TIkVXeF4PBQPfu3XnjjTd44YUXzNt79+5NeHg44eHhODg4cOTIEYt2 -qampdOzYkQsXLjB8+HACAgLo3bu3RWzTpk2jVatWtGzZklGjRpV7NdiKFSto3749zZo149Zbb2Xd -unUAnD9/nrZt2xIXF8fOnTvNcVzdf2ZmJmPGjCEkJISIiAheeeUV8+dxrcV35MgRQkJCLJYSXL58 -mYCAAAoKCqp8LEVEROTGZvOaVJPJRE5ODvHx8eTn59fZN9hdvHwYOGcNXcZOwT+6PUMXbmTowo30 -nbYYAO/gCIwBzUndv8vc5uSeLQR37IG9o7N5W+K2dfR4ejYPLvoKOwdHfvxgjrnswMqFnDv6I/fN -+pj7536Ok5uRfcvftoijoKCAxMREjh49Wu196t+/PwkJCWRlZQGwZcsWkpKSSEpKws/Pr8I2Z8+e -JS4ujsGDB3PixAmWLVtmLnvppZfYsWMHe/fu5fjx43h5eTFlyhRz+cqVK5k8eTJLly4lNTWV5cuX -k5eXB1yZvT148CDz5s2je/fu5ji2bNlibj927FgMBgOJiYnEx8ezfv16/v73v9sUX+vWrWnRogUb -N2401127di0DBgzAxcWlmkdSREREblQ2J6nHjh1j4cKFfPPNNwwcOBAHh1p/xarNovo/zE9frTH/ -nrRjAy3uus+izi33j8K1iR92Do5E3D2I1H07zWXHNnxEh7gncXRxA4OBNkPHcip+m0V7o9FIcnIy -27dvr3a8np6euLi4cPbsWZvbpKamMmXKFB544AHc3d1p1qyZuWzu3Lm8+uqrGI1GDAYDU6ZMMc+U -AsyZM4eZM2fSrl07AKKionj44YdtGvfy5cusXbuW2bNn4+joiI+PD9OnT2fx4sU2xzd+/HiL+h99 -9BEjRoywed9FRESk8bE504yOjiY6OpqMjAxWr17N7bffzi233FKbsdkspEtPflz2BvmXLoDBQPa5 -09wUc+s163sHR1CYkwlAYdYlivJz2TXveYs6zh6e5dr5+PjUSLyZmZkUFBQQFBRkcxuj0UiPHj3K -bU9PTycrK6vcMoSrY/3pp59o3bp1lWJNSkrC19cXLy8v87abb76ZpKQkm+IDGDx4ME8//TRpaWkY -DAZOnDjBnXfeWaV4REREpHGo9HSoj48P7dq14z//+U+dJqn2jk4UZlf88JSdvQM39xxM4rbPcXBx -JfyOe+A6X7rKTkvB6H9lps/ZwxtHFzf6vPAO7r6B140hMzMTV1dXnJycqr4jwPr162nVqhVGo7Fa -/QA0bdoUo9HIpk2bCAkJqbBOWFgYx48fp23bttfsx8XFhYsXL5bbHhoaSnp6OtnZ2eZP3J44caJS -D805OjoycuRI/vnPf+Lu7k5sbCwGK18iExERkcbN6u3+/Px8Vq1aZU5gLl26xJEjRyxu59YF7+AI -LqckkJueBkDBVQ8+AbTs8wCJ2z8n+bvNRNw1oFz75O82U1pcSFFeDgdWvkNkr/uvFBgMtOr7IN8v -mkFRXs6VvjMzyEg6ZtE+NzeXsLCwa84W2mrXrl1MnDiR6dOnV6ufnxkMBh577DEef/xxMjOvzA6f -P3+e/fv3m+uMGzeOKVOmcOzYlX06efIks2bNsugnJiaGw4cPk5KSAsCFCxeAK3+UDBo0iIkTJ1Ja -WkpmZiYvvvgio0ePrlScjz76KB988AGrVq3SrX4RERGxyupMqqurK61ateKzzz7j8uXLmEwm2rVr -x2233VYX8ZkZ/ZvRIW4CG6c+gr2TC+6+gfR6bj529vYAuPn44dW8BTnnz+DVLLxcewdnF9ZP/B2F -OZcJv+NeYgb8kii1j5vAoTX/YMOzcWAw4ORmpO0Dj+ITHmWu4+TkRGhoaJUfGBswYAAGg4Hg4GDm -z5/PoEGDqtRPRWbMmMHMmTO57bbbMBgMeHl5MXXqVNq3bw/A6NGjKSkpYciQIeTm5uLn58fkyZMt -+ggPD+fVV1/lzjvvxNXVlZCQENavX4+DgwNLlizhqaeeokWLFjg4OPD73/+ev/zlL5WKMSgoiOjo -aJKTk4mKirLeQERERBo1g8lkMlWng1+/6ujXFniWX9t5tUnVG97C9+++gnfIzUTdY/lQ0BcTY7l1 -xFMEtulcY2NJ5Y0bN45bbrmF8ePH13coIiIi0sD9pj6Lej1nj8Rz9kg8LfsMvUaNmkuGpfK2bdvG -tm3bGDt2bH2HIiIiIr8BDec9UlVUUljApxMG4ujqTrfx07FzcKzvkOQqeXl5REVF4enpyXvvvVft -h85ERESkcbihbveLiIiIyI3hhrndLyIiIiI3DiWpIiIiItLgKEkVERERkQanUSWpJlNZldp9MTGW -tEN7ajiaG8+BAwcIDAwkPj6+XsYvK6v8+c3LyyM8PJzw8HCcnZ3ZunVrLUR2RVXiu9rOnTvZu3dv -DUUjIiLSsFU6SV2xYgWLFi2qjVhq1aWT/+Wr6Y/VdxjXdfvtt/PXv/613PbJkyfj6uqKn5+f+d/g -wYPrIcLrCwwMZOjQoTRv3rzOxz548CD9+vWrdDs3NzeSkpJISkq65mdjw8PDCQgIICgoiK5du/LZ -Z5/VWXxXO3DggPmrYSIiIje6Sr2C6sCBAxQXF9dWLLWqIOtyfYdwXUeOHMHPz4+vv/6aoqKicq9q -euyxx5gzZ049RWcbf39/5s2bVy9jp6en12r/GzZsoEOHDuzatYvY2Fjy8vKIjY21uX114issLOS5 -555jxYoVlJaWsnnzZt566y2aNGlS5T5FREQaOptnUrOysvj222/p1q1bbcZTztkjP/L1zCfYPG0M -a8ffy+kft7Nm3D189fIvs6KXTyXy7d8n8+mEQawcfTe75j1PaXEhAAWZGax7aijfvvUs5/+znzXj -+rNmXH82T7N8qXzSzi/5/OkHWTW2F1888xCn4rdZlBfn5bD9jaf51yN38sXEWLLPnrIoLykpoX37 -9owcObJK+7l48WIeeeQR7rnnHj755JNKtX3wwQd58cUXLX6fPXu2+fdOnTqxfPlyunfvTkBAAAMH -DrRImkpKSpg2bRqtWrWiZcuWjBo1yuLVYqmpqXTs2JELFy4wfPhwAgIC6N27t7m8d+/e5lvmDg4O -HDlyxFy2fft2Bg4cSK9evbj55pv54osvaNGiBf3797d5/E6dOrFv3z6GDRuGr68vnTp1IjExEYDz -58/Ttm1b4uLi2LlzpzmOq+M7cuQIw4cPJzo6mptuuomRI0dSUFBQqWMMYDAY6N69O2+88QYvvPCC -Tf3XRHxLlixhz549/PTTT5w+fZpu3bqRn59f6fhFRER+S2xOUj///HN69uyJs7NzbcZToTMHdtN5 -9GR8I9tw6JP3uO/1j0hPOExu+lkAstNSCOvWn4Fz1jBkwZdcPp3IfzevBsDFy4eBc9bQZewU/KPb -M3ThRoYu3EjfaYvN/Sd/t4l9H75Ft/Ev8+Dirdzx59coKbRMYv798UJuuX80989dh6t3Uw6tXWJR -XlBQQGJiIkePHq30/hUWFvLll19y77338vvf/57Fixdbb3SV+fPns3jxYg4dOsTGjRtJSkriqaee -sqizbNkyVq1axalTp3BycmLixInmspdeeokdO3awd+9ejh8/jpeXF1OmTLFof/bsWeLi4hg8eDAn -Tpxg2bJl5rItW7aYb5n7+fmVi2/z5s28/fbbdOnShddee40ffviBH374gVOnTtk8/tixY3n22Wc5 -fvw4AQEBzJw5E7gye3vw4EHmzZtH9+7dzXFs2bLF3DYhIYGHHnqIgwcPcuLECY4ePcq7775bqWN8 -tf79+5OQkEBWVpbV/msqPoPBgMlkwsHBgUcffZSgoKAqxy8iIvJbYNPt/v379+Po6EhMTAynT5+u -7ZjK8WoejndwBJ6BoXgHR+Ds2QR330Cyz53G3fcmgjvfDUBxfi5ZZ5LxDAzlwk+HiLax/6Off0CH -4X/GJzzqynjNwvFqFm5R59YRT9G0xZUew27vx3+/Wm1RbjQaSU5Oxs3NrdL7t2bNGvr374+TkxNR -UVHk5OSQmJhIRESEuc7ChQt5//33zb8fOXLEnKj4+/vz5ptvMnbsWLKzs/noo4+wt7e3GGPSpEkE -BgYC8Ic//IFHH33UXDZ37lw2btyI0WgEYMqUKXTs2JG5c+ea66SmpvLhhx/So0cPANzd3W3ev+jo -aFq3bk1kZCQxMTH4+voSEhLCiRMnCA4Otmn8GTNm0KFDBwCGDRtWqXXRgwYNAq58eOL48eNERkby -ww8/2Nz+1zw9PXFxceHs2bN4enpWu39r7ceMGcO///1vwsLCGDt2LJMmTcLLy6vK8YuIiPwWWE1S -MzMz2bFjB6NHj66LeK7LYKj457yM8/yw5DWK8/NoenMMBjt7SvJybO43Ky0F7+CI69axc/jlULl6 -N6W0uKhcHR8fH5vHvNqwYcN46KGHzL/v3LkTOzvLSe5x48Zdd03qkCFDmDBhArfddhv/93//d93x -WrduTUZGBnBlrWRWVla5ZQq/3hej0WhOUKvKcNVJ+/lnW8d3dPzlc7cBAQEUFhbaPG5qaioTJkwg -JyeHjh074uDgQGZmZlV2Abjy30RBQYH5j4Tq9m+tvZOTE4sWLeLPf/4zr7/+Oq1atWLTpk1Wz7OI -iMhvmdUk9fjx4xgMBt577z3gyvrB3Nxc3n77bcaOHWuldd3Y8eZEou+NI7RrHwASt60jZc/XFnXs -HZ0ozK744SmjfxCZqck0CW1ZrTgyMzNxdXWt9PfpHRwcrvu7LV5++WWGDBnC1q1b+fbbb7njjjuu -WTchIYHw8CszxU2bNsVoNLJp0yZCQkIqPW511dT4Li4uXLx4scKy2NhYJkyYwAMPPABcWfrw6aef -lqtnZ2dHSUmJ1bHWr19Pq1atzDO/tvRfE/HFxMSwbNkynn76ad59910WLFhgNVYREZHfKqtrUjt3 -7syECRPM/4YNG0ZAQAATJkzA1dW1LmK0KudCGob/zTxmpZ3k+OZV5ep4B0dwOSWB3PQ0AAqyLpnL -WvUbxr7lb5OZmvS//s5w+LP3KxVDbm4uYWFh1Z5trIr9+/ezfPlyZs2axaJFixg5ciQ5OZYzyatW -raKgoIDMzExeeuklRo0aBVyZ0Xzsscd4/PHHzbN358+fZ//+/XUSe02NHxMTw+HDh0lJSQHgwoUL -5rKTJ0+alz/89NNP11yPGhoaypdffonJZDLPNP/arl27mDhxItOnT69U/9WJb8KECbzzzjucOXOG -EydO8MMPP9CyZfX+oBIREWnoboiX+XcZM5lDnyzhsz/fz/4V82nVd1i5Okb/ZnSIm8DGqY/w6YRB -fPvWZMpKSwGI7DWEWwb9gW/+9hSr/9iPbbP+gkdA5d716eTkRGhoKJGRkTWyT7/2zjvvWLwn9ef1 -mcXFxTzyyCPMnTsXDw8P7r77bu67775yD065ubnRuXNnYmJiuP322y3KZ8yYQefOnbntttuIiYlh -0KBBnDlzplb2oyI1MX54eDivvvoqd955J9HR0QwfPtw8Kzp37lxee+01brnlFp5//nkee6zi9+VO -nTqVzZs3ExISwhNPPGFRNmDAAJo1a8Zf//pX5s+fz7Bhv1xjtvRfnfiefPJJ9u/fT5cuXRg0aBAj -RowoF5+IiMiNxmAymUzV6eDqVwVVZIGn53XLJ1VveLFBp06deP311+nZs2d9hyLVMH/+fLy9vYmL -i6vvUERERGpd5Rc/ym9SNf8WkQYgMDDQvA5WRETkRqckVeQ3YsiQIfUdgoiISJ1RktoIxMfH13cI -IiIiIpXS4JNUa2tePTw86igSEREREakrN8TT/SIiIiJyY1GSKiIiIiINjpJUEREREWlwbFqTeuDA -AdatW2fx/fQBAwbQunXrWgtMRERERBovm5LUgoICOnbsyD333FPb8YiIiIiI2Ha7Pz8/H3d399qO -RUREREQEqMRManp6OitWrKCsrIzo6Gjzt+NFRERERGqaTUlq69atyc/PJywsjIsXL7Jq1SoMBgPt -27ev7fhEREREpBGy6XZ/cHAwLVu2xMnJicDAQLp168axY8dqOzYRERERaaSq9Aoqg8GAnZ3eXiUi -IiIitcNqppmbm8vq1au5dOkSAJcvX2bXrl1ER0fXenAiIiIi0jhZXZPq7u7OzTffzNq1a8nOzsbO -zo4uXbrQtm3buohPRERERBohmx6cateuHe3atavtWEREREREAH0WVUREREQaICWpIiIiItLgKEkV -ERERkQZHSaqIiIiINDhKUkVERESkwVGSKiIiIiINjpJUEREREWlwbHpPKkBCQgJbt24lOzsbLy8v -evbsSURERG3GJiIiIiKNlE1J6pkzZ1i/fj0PP/wwAQEBXLx4kcLCwtqOTUREREQaKZuS1B07dtCz -Z08CAgIAaNq0aa0GJSIiIiKNm01J6rlz5+jWrRvr16/nwoULBAcHc8cdd+Dk5FTb8YmIiIhII2TT -g1PZ2dl8/fXXdOjQgYceeoiLFy+ydevW2o5NRERERBopm5JUd3d3Bg0aRGBgIK6urnTp0oWEhITa -jk1EREREGimbklQ/Pz/S09PNvxuNxloLSERERETEpiS1S5cufPPNNxQUFGAymfjuu+9o2bJlbccm -IiIiIo2UTQ9ORUZGkpWVxXvvvUdpaSlhYWH07NmztmMTERERkUbK5pf533rrrdx66621GYuIiIiI -CKDPooqIiIhIA6QkVUREREQaHCWpIiIiItLg2Lwmtb54eHjUdwgiIiIiUsc0kyoiIiIiDY6SVBER -ERFpcBpFkvrFxFjSDu2xWs9kKquDaERERETEGqtrUnNzc5k7d67FttLSUoxGI08++WStBVbXLp38 -L/Hvz6bvi4vqOxQRERGRRs9qkuru7s6zzz5rse3jjz+mTZs2tRZUfSjIulzfIYiIiIjI/1T66f4j -R47g4OBATExMbcRTobyM83y3cBqZpxKxc3SiaYsY2v/uCTwCmgOwbGhbHn5/B84e3gDsXzGPkoI8 -Oo2caO7j4on/8O+PF5B15iR+LdvS7fGXcPZsQkFmBpunjaUg6xJFudmsGdcfAI+AYPpOW2we/+vX -JtB76kLil/6NMwd20yQk0lxeVlrKwdWLSNq5AUwm/KM70HnUJBxd3W0qBygpKaFTp060a9eOpUuX -1v5BFREREWnAKpWkmkwmtm3bxrBhw2orngodWPkORv9m9J4yH4BT8dssEjxbpB3YTY+/zsbZw5sd -cybx4wdv0W38S7h4+TBwzhpOfr+F45tWXvN2f/6ldL5961la9nmArn98gaK87KviW8j5Y/u5b9bH -ODq7Ev/+LPYtf5suYybbVA5QUFBAYmIiTk5OlT08IiIiIjecSj04lZiYiIeHB35+frUVT4XcmgZw -7uhezh7dS1lZKcGd78bFs0ml+rjl/lG4NvHDzsGRiLsHkbrv20q1z8s4T5uhYwjt2gcHF1fcfPzN -Zcc2fESHuCdxdHEDg4E2Q8dyKn6bzeUARqOR5ORktm/fXqm4RERERG6N0Mk7AAAgAElEQVRElZpJ -TUhIIDw8vLZiuaa2Q8fgbPRi34dvkXkmmeCOd9Eh7kmLRLEyvIMjKMzJrFQbBxc3bmrdqdz2wqxL -FOXnsmve8xbbnT08bSq/mo+PT6ViEhEREblRVSpJTUlJoXfv3rUVyzUZ7OyJuudhou55mMKcTPYs -fpXd775Mr8lX3jpg5+BIQdYl85rUspLi6/aXffaUeT3rz+wdnSjMrvzDU84e3ji6uNHnhXdw9w2s -dPnVMjMzcXV11S1/ERERafQqdbv/0qVL9fKZ0n0fvc3lU4kAOLt74tW8BZhM5nLPoFASt31OaXEh -p3/czokdX5Tr4+TurygtLqQ4L4cDK9/h5p6DLcq9gyO4nJJAbnoaAAVZl2wLzmCgVd8H+X7RDIry -cq60zcwgI+mYbeX/k5ubS1hYGD169LBtXBEREZEbmM0zqaWlpeTn5+Pm5lab8VTI7+Y2xC/9GzkX -0jCVleEZFMJtY6eayzuPnMh3C6eRuG0doV370CHuyXJJoDGgOesnxVGYfYnw7v+PmAEjLMv9m9Eh -bgIbpz6CvZML7r6B9HpuPnb29lbjax83gUNr/sGGZ+PAYMDJzUjbBx7FJzzKpnIAJycnQkNDiYyM -rM6hEhEREbkhGEymq6YkqyA7O/u65Qs8y6+9vNqk6g0vIiIiIjegRvFZVBERERH5bVGSKiIiIiIN -jpJUEREREWlwKv1Z1Lpmbc1rfbxtQERERERql2ZSRURERKTBUZIqIiIiIg2OklQRERERaXBsWpNa -WlrKhg0bSEpKwmQyERUVRd++fTEYDLUdn4iIiIg0QjbNpMbHx5OTk8P48eMZN24caWlpHDlypLZj -ExEREZFGyqaZ1Pz8fEJCQrC3t8fe3p6IiAirT92LiIiIiFSVTTOpbdu2Ze/evfz73/8mNzeXhIQE -YmJiajs2EREREWmkbJpJ9fLyIjAwkH379vH555/TpUsXvLy8ajs2EREREWmkbEpSly9fTpcuXYiK -iiIjI4MvvviC3bt307Vr19qOT0REREQaIau3+/Pz8zl37hxRUVEA+Pj40KdPHw4dOlTrwYmIiIhI -42Q1SXVxccHJyYnjx49jMpkoKysjISFBt/tFREREpNZYvd1vMBiIjY1l8+bNbN68GZPJRFBQEPfe -e29dxCciIiIijZBNa1IDAgIYMWJEbcciIiIiIgLos6giIiIi0gApSRURERGRBkdJqoiIiIg0OEpS -RURERKTBUZIqIiIiIg2OklQRERERaXCUpNagjOTjrBzdk/SEw7XSv8lUViP9HFyzmD3/mFlue23H -LyIiImIrm96TmpWVxRdffMGFCxdwdXWlX79+hIaG1nZsvzluTfwI7dob96YBNd73pZP/Jf792fR9 -cVGN9/2z2oxfREREpDJsmkldu3YtkZGRPPnkkwwZMoQ1a9aQnZ1d27H95rh4+dBlzBRcm/jVeN8F -WZdrvM9fq834RURERCrD6kxqQUEBaWlp/OEPfwDA19eXDh068OOPP3L33XfXeoA14YuJscTcN5zj -m1aSlXYSv8g2dBs/HWfPJgDkZZzn69cm0HvqQuKX/o0zB3bTJCSSvtMWA1CUl8OP78/mzIHvsLN3 -4Oaeg2kzZDQGO3sANk8bS/a5UwDkpp9l4Jtr8A6OMI9fVlrKwdWLSNq5AUwm/KM70HnUJBxd3c11 -knZ+yeFP36MgMwNXb1/+b9g4gjv1oCAzg83TxlKQdYmi3GzWjOsPgEdAsDk+awpzMvl+0QzOHv4B -j4DmGAOa42z0Mpdbi9/a8QEoKSmhU6dOtGvXjqVLl9p+ckREREQqYNPt/uLiYoqKinB2dgbA39+f -w4d/W+sWE7eto8fTs3H28GbHnEn8+MEcuo2fbi7Pv5TOt289S8s+D9D1jy9QlPfLTPHuhdNwdDMy -ZMEGivNz2TpjPPbOLrQe8HsAi2Rt5eie5cY+sHIh54/t575ZH+Po7Er8+7PYt/xtuoyZDEDyd5vY -9+Fb3D3p7/iER5GZmkRG0nHgyuzmwDlrOPn9Fo5vWlml2/27F76EvZMLD7y7meL8XLbN/qtFkmot -fmvHB678MZOYmIiTk1Ol4xMRERH5Nau3+11cXAgMDGTPnj0UFhaSmJjI1q1bycnJqYv4aswt94/C -tYkfdg6ORNw9iNR9Oy3K8zLO02boGEK79sHBxRU3H38AinKzOfn9Fjr+4Wns7B1wNnrR7uHx/PTV -GpvHPrbhIzrEPYmjixsYDLQZOpZT8dvM5Uc//4AOw/+MT3gUAF7Nwgnv3r/6Ow0U5WSRsudruox+ -FntHJ1w8mxD0f10r3c+1js/PjEYjycnJbN++vUbiFhERkcbNppnUBx98kG+++YaPPvqI5s2bc8cd -d5CQkFDbsdUa7+AICnMyLbY5uLhxU+tO5ermnE/FxbMJTm5G8zbPwBByzqfaNFZh1iWK8nPZNe95 -i+3OHp7mn7PSUixur9ek7POpuHg1wcnoab3ydVzr+FzNx8enWmOIiIiI/MymJNXb25v777/f/Pum -TZsICPjtPgGenZaC0b+ZTXXd/QIpyLpEcX6ueQ1p9rnTuPsF2dTe2cMbRxc3+rzwDu6+gRXWMfoH -kZmaTJPQltfsx97RicLsyj885erlQ2F2JqXFhdg7Ole6fWVkZmbi6uqqW/4iIiJSbTY93Z+cnExh -YSEAJ06c4PDhw3Ts2LFWA6tpyd9tprS4kKK8HA6sfIfIXvdbbwQ4G70I6dyTvf+cg6mslKK8HP79 -rwVE9h5i28AGA636Psj3i2ZQlHdliURBZgYZScfMVVr1G8a+5W+TmZoEQM6FMxz+7H2LbryDI7ic -kkBuetqVPrIu2TS8W9MAmoS15OCqRWAykX02haQdG2yLvRJyc3MJCwujR48eNd63iIiIND42zaSe -O3eO9evXU1RUhI+PDyNGjMDV1bW2Y6tRDs4urJ/4OwpzLhN+x73EDBhhc9vbH3+J+KV/Y824/4ed -vT0RPQbQuhLt28dN4NCaf7Dh2TgwGHByM9L2gUfNa1Ajew3BVFrKN397ipKCfFy8mtBmyBiLPoz+ -zegQN4GNUx/B3skFd99Aej03Hzt7e6vj3/nU63w3/0VWPdobn7AoWvS4j7yL522O3xZOTk6EhoYS -GRlZo/2KiIhI42QwmUym6nRg7X2pCzyvvxZykpXhrfXv4eFx3XK48gqqW0c8RWCbzlbrVkdZaSkr -RnRl0Fuf2LycQERERETKs2km9cZQrVz8unLOn8HoH8TZwz/g4OyKWx1+senCfw+y5ZVxFZY9/P4O -87tcRURERH5LGlGSWjvyLp7j27cnk59xAXtnF+54ciZ29nV3WP1atiX2n7vqbDwRERGRutAobveL -iIiIyG/LDT+TqiRXRERE5LfHpldQiYiIiIjUJSWpIiIiItLgKEmtBJOprL5DqFUHDhwgMDCQ+Pj4 -ehm/rOzGPr4iIiJiOzu48rWgr7/+mgULFvDhhx+Wq1RWVsamTZt4++23mT9/Pnv37q3zQOvbpZP/ -5avpj9V3GFUSHh5OQEAAQUFBdO3alc8++6zCeoGBgQwdOpTmzZvXcYRw8OBB+vXrV+fjioiISMPk -AGBnZ0dQUBBFRUWkp6eXq/Tdd9+RlZXFn/70JwoLC3n//ffx8fEhPDy8zgOuLwVZl+s7hGrZsGED -HTp0YNeuXcTGxpKXl0dsbKxFHX9/f+bNm1cv8VV03YmIiEjjZQfg6upKVFQUQUFBFVbat28fPXr0 -wM7ODldXV26//Xb27dtXp4HWl4LMDNY9NZRv33qW8//Zz5px/Vkzrj+bp40F4PKpRFb/sa/FUoCi -3Gw+HtWD0uJC4MoXr07sWM+Xz/2Bj0f14OuZT1CYdclcv6y0lH9/vJBPnhjAJ3+6j13zX6A4P9ci -jpKSEtq3b8/IkSOrvC8Gg4Hu3bvzxhtv8MILL5i39+7dm/DwcMLDw3FwcODIkSMW7VJTU+nYsSMX -Llxg+PDhBAQE0Lt3b4vYpk2bRqtWrWjZsiWjRo0q91aFFStW0L59e5o1a8att97KunXrADh//jxt -27YlLi6OnTt3muO4uv/MzEzGjBlDSEgIERERvPLKK5SWltoU35EjRwgJCbFYSnD58mUCAgIoKCio -8rEUERGR2mV1TWpZWRlZWVn4+vqya9cujh07hr+/PxkZGXURX71z8fJh4Jw1dBk7Bf/o9gxduJGh -CzfSd9piALyDIzAGNCd1/y8v1D+5ZwvBHXtg7+hs3pa4bR09np7Ng4u+ws7BkR8/mGMuO7ByIeeO -/sh9sz7m/rmf4+RmZN/yty3iKCgoIDExkaNHj1Z7n/r3709CQgJZWVkAbNmyhaSkJJKSkvDz86uw -zdmzZ4mLi2Pw4MGcOHGCZcuWmcteeuklduzYwd69ezl+/DheXl5MmTLFXL5y5UomT57M0qVLSU1N -Zfny5eTl5QFXZm8PHjzIvHnz6N69uzmOLVu2mNuPHTsWg8FAYmIi8fHxrF+/nr///e82xde6dWta -tGjBxo0bzXXXrl3LgAEDcHFxqeaRFBERkdpiNUktKSnBzs4Og8FAcnIyaWlpODo6UlhYWBfx/SZE -9X+Yn75aY/49accGWtx1n0WdW+4fhWsTP+wcHIm4exCp+3aay45t+IgOcU/i6OIGBgNtho7lVPw2 -i/ZGo5Hk5GS2b99e7Xg9PT1xcXHh7NmzNrdJTU1lypQpPPDAA7i7u9OsWTNz2dy5c3n11VcxGo0Y -DAamTJlinikFmDNnDjNnzqRdu3YAREVF8fDDD9s07uXLl1m7di2zZ8/G0dERHx8fpk+fzuLFi22O -b/z48Rb1P/roI0aMGGHzvouIiEjds/oyfycnJ+BKshoXFwdASkqKXoJ/lZAuPflx2RvkX7oABgPZ -505zU8yt16zvHRxBYU4mAIVZlyjKz2XXvOct6jh7lP9Sl4+PT43Em5mZSUFBwTWXd1TEaDTSo0eP -ctvT09PJysoqtwzh6lh/+uknWrduXaVYk5KS8PX1xcvLy7zt5ptvJikpyab4AAYPHszTTz9NWloa -BoOBEydOcOedd1YpHhEREakbNn1xyt/fn9TUVEJDQwE4ffo0/v7+tRpYQ2Pv6ERhdsUPT9nZO3Bz -z8EkbvscBxdXwu+4BwyGa/aVnZaC0f/KTJ+zhzeOLm70eeEd3H0DrxtDZmYmrq6u5j8cqmr9+vW0 -atUKo9FYrX4AmjZtitFoZNOmTYSEhFRYJywsjOPHj9O2bdtr9uPi4sLFixfLbQ8NDSU9PZ3s7Gzz -H0YnTpwgLCzM5hgdHR0ZOXIk//znP3F3dyc2NhbDdc6PiIiI1D+b3pPasWNHtm/fTmlpKTk5OcTH -x9OhQ4fajq1B8Q6O4HJKArnpaQAUXPXgE0DLPg+QuP1zkr/bTMRdA8q1T/5uM6XFhRTl5XBg5TtE -9rr/SoHBQKu+D/L9ohkU5eVc6Tszg4ykYxbtc3NzCQsLu+Zsoa127drFxIkTmT59erX6+ZnBYOCx -xx7j8ccfJzPzyuzw+fPn2b9/v7nOuHHjmDJlCseOXdmnkydPMmvWLIt+YmJiOHz4MCkpKQBcuHAB -uDIjO2jQICZOnEhpaSmZmZm8+OKLjB49ulJxPvroo3zwwQesWrVKt/pFRER+AxwAVq9ezenTpykq -KqKoqIi33noLT09PRo0aBUC7du24fPkyCxcuxM7Ojt69exMQEFCvgdc1o38zOsRNYOPUR7B3csHd -N5Bez83Hzt4eADcfP7yatyDn/Bm8mpV/NZeDswvrJ/6OwpzLhN9xLzEDfkmU2sdN4NCaf7Dh2Tgw -GHByM9L2gUfxCY8y13FyciI0NJTIyMgqxT9gwAAMBgPBwcHMnz+fQYMGVamfisyYMYOZM2dy2223 -YTAY8PLyYurUqbRv3x6A0aNHU1JSwpAhQ8jNzcXPz4/Jkydb9BEeHs6rr77KnXfeiaurKyEhIaxf -vx4HBweWLFnCU089RYsWLXBwcOD3v/89f/nLXyoVY1BQENHR0SQnJxMVFWW9gYiIiNQrg8lkMlWn -g1+/aujXFniWX1t5tUlWhrfWv7W1sdVtXxnfv/sK3iE3E3WP5UNBX0yM5dYRTxHYpnONjSWVN27c -OG655RbGjx9f36GIiIiIFfosag05eySes0fiadln6DVqVOtvAammbdu2sW3bNsaOHVvfoYiIiIgN -bHpwSq6tpLCATycMxNHVnW7jp2Pn4FjfIclV8vLyiIqKwtPTk/fee6/aD52JiIhI3dDtfr1KS0RE -RKTB0e1+EREREWlwlKSKiIiISIOjJFVEREREGhwlqXXIZCqrUrsvJsaSdmhPDUdTseLiYiZOnEhe -Xl6djFeRGTNm8MQTT1S6XVlZ1Y5vfTt27BhvvvlmjfRVn+fvwIEDBAYGEh8ff916VT2/1lg7/9bi -S0lJoU+fPtx00020a9eOTZs2Vap9Q1WT15eISF2ygytfM/r6669ZsGABH374YblK1srFuksn/8tX -0x+r7zCsGj58OE2bNsXNzc287dy5c8TGxhIaGkpwcDCLFi2yaHP//ffj6+tLWFgYoaGh9O3bl8OH -D9dp3AcPHqRfv351OqatrB2/m2++md27dzNnzpxqj1Wf5y8wMJChQ4fSvHnzau9HZdly/q3F98wz -z9CqVSuSk5PZvXs3d9xxR6XaN1Q1eX2JiNQlOwA7OzuCgoJo0aJFxZWslIt1BVmX6zsEq/71r39R -UFDApEmTLLafOXOGBx54gOTkZD7//HP+9Kc/cebMGYs6r7/+OsnJySQnJzNo0CBiY2OvOc7SpUtZ -sWJFjcaenp5e5bYzZsxg27ZtNRfMr1g7fg4ODixbtoxFixaZPx1bFfV9/vz9/Zk3bx6BgYFV3oeq -suX8W4vv4MGDDB8+HBcXF1xdXS0SfVvaV1VtX381dX2JiNQ1OwBXV1eioqIICgqqsJK18hvZ2SM/ -8vXMJ9g8bQxrx9/L6R+3s2bcPXz18i+zopdPJfLt3yfz6YRBrBx9N7vmPU9pcSEABZkZrHtqKN++ -9Szn/7OfNeP6s2ZcfzZPs3ypfNLOL/n86QdZNbYXXzzzEKfit1mUF+flsP2Np/nXI3fyxcRYss+e -sigvKSmhffv2jBw5ssr7+sYbbzBz5sxy29u3b8/QoUMxGAy0bNkSDw+Pa75v1GAwMHToUI4dO1bu -9mtaWhr33XcfW7dupX///ubtGRkZPPzwwwQEBNC1a1eOHj1q0e7IkSMMHz6c6OhobrrpJkaOHElB -QQEA58+fp23btsTFxbFz507Cw8MJDw+nd+/eFsdm2rRptGrVipYtWzJq1CiLV5MNGzaM559/nqee -eor8/PzKH7j/efPNN9m9e3e57bYcPzc3N5555hnmzZtX5fHr6/z17t3bfNwdHBw4cuSIRTtr59fa -+enUqRP79u1j2LBh+Pr60qlTJxITEwHbzr+1+J555hmioqJISEhg6NChlW5vLf7U1FQ6duzIhQsX -GD58OAEBARb91/b1BzVzfYmI1DWtSbXBmQO76Tx6Mr6RbTj0yXvc9/pHpCccJjf9LADZaSmEdevP -wDlrGLLgSy6fTuS/m1cD4OLlw8A5a+gydgr+0e0ZunAjQxdupO+0xeb+k7/bxL4P36Lb+Jd5cPFW -7vjza5QUFljE8O+PF3LL/aO5f+46XL2bcmjtEovygoICEhMTyyUANu/jmTNkZWURExNzzTplZWWM -Hj2aJ554Al9f32vWee+99+jcuTN2dr9cXv/617/o1asXY8aM4cMPP6RJkybmsrFjx+Lo6EhKSgrr -1q0jNTXVos+EhAQeeughDh48yIkTJzh69CjvvvsucGV26+DBg8ybN4/u3buTlJREUlISW7ZsMbd/ -6aWX2LFjB3v37uX48eN4eXkxZcoUc3lkZCTbt28nKCiIrl27smdP5db//jwrmZubS3Z2NmVlZZw7 -d67Sx2/w4MF8+umnlRr76hjq6/xt2bLFfNz9/PzK9Wnt/Fo7Pz/38eyzz3L8+HECAgLMybgt599a -fLNmzeLYsWOEhYWxYcOGSre3Jf6zZ88SFxfH4MGDOXHiBMuWLTOX1dX1V53rS0SkPihJtYFX83C8 -gyPwDAylWYfuOHs2wd03kOxzpwEI7nw3wR3vorSokMzTiXgGhnLhp0M293/08w/oMPzP+IRHXRmv -WTjh3ftb1Ll1xFM0bRGNs4c3Ybf3IzM1yaLcaDSSnJzM9u3bq7SPycnJREREXLfO9OnT8fT0ZNq0 -aeXKJk2aRFhYGOHh4fz444989NFH5rIlS5Ywe/ZsduzYweDBgy3aXbp0iU8//ZS3334bZ2dn/Pz8 -6NOnj0WdQYMGMWDAAAoKCjh69CiRkZH88MMPNu/b3LlzefXVVzEajRgMBqZMmcK6dess6tjZ2fHM -M8+wfPlyBg4cyMGDB23uf+nSpXTt2pW1a9fy6quvcuedd/Ltt9+Wq3e94wfg4+NDXl4eRUVFNo/9 -s/o6f9bYcn5tOT8zZsygQ4cONG3alGHDhjWo29a2xJ+amsqUKVN44IEHcHd3p1mzZhbldXH9Vef6 -EhGpD/osaiUYDBX/nJdxnh+WvEZxfh5Nb47BYGdPSV6Ozf1mpaXgHXz9BMPO4ZdT5erdlNLi8v+j -8fHxsXnMXysqKsLR8fqfdD1y5Agvv/xyhWWvv/46o0ePrrCsT58+LF++nKlTpzJ79myMRqO57OfZ -qatn5n4tNTWVCRMmkJOTQ8eOHXFwcCAzM9OGvbqyVjErK6vcMoiKjlVKSgpPPvkkAwcOtJrwXe25 -557jkUceoUOHDhQXF3PgwAHs7e3L1bve8fuZg4MDRUVFlf58a32dP2usnV9bz8/V+xYQEEBhYaHN -MdQmW+M3Go306NHjun3V9vUHVb++RETqg2ZSa8CONycS3v0e+rzwDh1+N4HANp3L1bF3dKIwu+KH -p4z+QWSmJlc7jszMzCrPkjRv3pxTp05dt86qVauIioqqdN8hISFs3bqVmJgYunTpwjfffGMu8/f3 -JyMjw7zGtCKxsbHExsayadMmZsyYwd13312ujouLCxcvXiy3vWnTphiNRjZt2sR//vMf87/9+/db -1FuyZAn9+vXjr3/9K4sXL8bd3b1cX9c7vlOnTmXx4sUMGjSIJUuWVFjH2vErKCigrKysUkngz+rr -/Flj7fzaen6sudb5r201FX9dXH/Vub5EROqDktQakHMhDcP/1u9lpZ3k+OZV5ep4B0dwOSWB3PQ0 -AAqyLpnLWvUbxr7lb5tv4edcOMPhz96vVAy5ubmEhYVZna25loiICLKysjh79myF5RkZGYSGhvLO -O+9UqX+DwcCECRP49NNPeeGFF8xr45o3b07btm155ZVXMJlMJCQkWNxqBjh58qR5Zuinn34yr0e9 -WkxMDIcPHyYlJQWACxcumMd97LHHePzxx82zr+fPn7dIIp5//nm2bdvG7t27ueeeeyqM/3rHNzs7 -m5iYGAYOHMj06dNJS0srV8eW47d582aLB2oqo77OnzXWzq8t58cW1zr/ta0m4q+L6w+qd32JiNQH -B4DVq1dz+vRpioqKKCoq4q233sLT05NRo0ZhS3lj12XMZA6uWcT+FfPwDomkVd9hpOzZalHH6N+M -DnET2Dj1EeydXHD3DaTXc/Oxs7cnstcQTKWlfPO3pygpyMfFqwlthoypVAxOTk6EhoYSGRlZpX0w -GAw8+uijzJo1izfeeKNcuclkqlK/v/bzQyJXJ1MrVqxg9OjRNG/enHbt2jFixAiLh2vmzp3LjBkz -eP7557nlllt47LHH+OSTTyz6DQ8PN6/Hc3V1JSQkhPXr1+Pg4MCMGTOYOXMmt912GwaDAS8vL6ZO -nUr79u0B+OMf/2j13ZfXO74eHh4888wzANjb2/Piiy+Wq2Pt+JlMJmbNmmV1OcC11Of5s8ba+bV2 -fmxxvfNf26obf11df9W5vkRE6oPBVM3/e139qpWKLPD0vG75JCvDW+vfw8OjVts3JsXFxXTr1o2X -X365wb4Y/0b1yiuvcPLkSRYvXmy98jXo/Mm11MT1JSJS13S7X8wcHR35/PPPeeutt+r1s6iNzeHD -hzly5AgLFiwoV/b999/TpEmTCv+VlpZa1NX5k4pc7/oSEWnINJOqmVQRERGRBkczqSIiIiLS4ChJ -FREREZEGR0mqiIiIiDQ4SlJFREREpMFRkioiIiIiDY4DXPmayZ49ezh27Bienp4MHz7colJqaipb -t27lwoULODs706tXL6Kjo+slYBERERG58TkA2NnZERQURFFREenp6RYVTCYTO3bsoFevXgQFBXHi -xAlWrFjBk08+qdc3iYiIiEitcABwdXUlKiqqwiTVYDAQGxtr/j0iIoKAgADOnTunJFVEREREakWl -16SWlZVx6dIlfH19ayMeEREREZHKJ6m7d++mRYsWeHt710Y8IiIiIiKVS1KTkpLYu3cv/fv3r614 -RERERERsT1LPnDnDp59+ykMPPYTRaKzNmERERESkkXOwpdKpU6dYvXo1w4YNIyAgoLZjEhEREZFG -zmAymUyrV6/m9OnTFBUVUVRUhNFoxNPTk1GjRlFcXMysWbMwGAw4OTlRWloKQFBQEMOHDyc7O/u6 -Ayzw9Lxu+SST6brl1vq39oaB6rYXERERkbpnMJmsZIlWKEkVERERkZqmz6KKiIiISIOjJFVERERE -GhwlqSIiIiLS4ChJFREREZEGR0mqiIiIiDQ4SlJFREREpMFRknoDOrhmMXv+MbO+wxARERGpMgeA -3Nxc9uzZw7Fjx/D09GT48OEWlVJSUvjmm2+4ePEiBoOBLl26cPvtt9dLwCIiIiJy43MAsLOzIygo -iKKiItLT08tVSkpKolevXjRv3pz09HTeffddgoKCCAsLq+t4RURERKQRcABwdXUlKirqmknqXXfd -Zf7Z19eX4OBg8vPz6y7KepaXcZ6vX5tA76kLiV/6N84c2E2TkI3uwLwAACAASURBVEj6TlsMQFlp -KQdXLyJp5wYwmfCP7kDnUZNwdHU395G080sOf/oeBZkZuHr78n/DxhHcqQcARXk5/Pj+bM4c+A47 -ewdu7jmYNkNGY7Czt2n8wpxMvl80g7OHf8AjoDnGgOY4G70s4v9u4TQyTyVi5+hE0xYxtP/dE3gE -NDfXKSkp+f/s3XlYlXX+//HngcOBA4cDokKAsqaipqG5ZFmZ29S3bZJyMmx+E2rTMuE002iaU7bY -PmWuZaU1TpKm5WiaWpbaYkbqYGo4iSiKCyBw2DkI9+8Pp1MnF0DZ1NfjurwuuD/b6z6Qvb1Xevfu -TXx8PPPmzWvsj1RERETktMx17WgYBqWlpfzwww+Ul5fToUOHxszV4pQX5PHF1EfoOOQ2+v3xMZxl -P79uNW3RbHLSt3Ljiwvx8raS+vaLbHl3Gn1HTwBg79er2fKvqVw7/lWCouNwZGeSn7nLNX7j7Ml4 -+doYNmslVeWlrJ3yAJ7ePnS96fd1Wn/j7CfwtPhw2+trqCovZd1Lf3UrUtMWvYYtOJzBE2cCsD91 -nVsBDVBRUUFGRgYWi6VhPzgRERGRM1DnG6fS09OZPXs2n3/+OTfffDNmc53r2/NCWX4O3RJGE9lv -CGYfK75Bwa629JUL6Jk4Fi8fXzCZ6JYwhv2p61ztO5fPp+fIPxMUHQdAQHg00f2vA8BZWsy+bz6l -1/97GA9PM962AOLveIAfP1lSp/WdJUVkbfqMvqMewdPLgo+9FWGX9nMb69s6hCM7N3N452Zqaqpp -3+dafOyt3PrYbDb27t3L+vXrG+wzExERETlTda40O3fuTOfOncnPz2fx4sVcccUVXHLJJY2ZrUUx -+/hyUdfeJ2yvLCrAWV7KVzP+7rbd29/u+rroUBaB7WNPOm9JTjY+9lZYfG2ubfbQCEpysuu0fnFO -Nj4BrbDY7Ce0/aR7wmi8bQFs+ddUHAf30r7XNfRMHOtWaAMEBQWdcg4RERGRplTvw6FBQUHEx8fz -ww8/XFBF6ql4+wfi5ePLkMdew69N6En72ILDcGTvpVVkxxPa/NqGUlFUQFV5qesUfPGRA/i1DavT -+taAICqLHVRXVeLp5X3SPiYPT+Kuv4O46++gssTBpjeeYePrTzFownS3fg6HA6vVqlP+IiIi0uxq -Pd1fXl7O+++/z9GjRwEoKChgx44dhIeHN3q4c4LJRKeht/PNnCk4y0oAqHDkk5+Z7urS6TfD2fLu -NBzZmQCU5B5k+7/fBsDbFkBEn4Fs/ucrGDXVOMtK+M97s+gweFidlvdtHUKrqI5se38OGAbFh7PI -3LDSrc+WBdMo3J9xfD0/OwHtYsAw3PqUlpYSFRXFgAEDzuRTEBEREWlQZoDFixdz4MABnE4nTqeT -qVOnYrfbSUpKwmq10qlTJ/79739TWFiIYRjEx8dz+eWXN3f2FqNHYjLfL3mTlY8kgsmExddG99vu -cV2D2mHQMIzqaj5/4SGOVZTjE9CKbsNGu8Zfcf8TpM57gSX3/R8enp7EDriJrjfdVef1r37oeb6e -+Tjv3zOYoKg4YgbcSNnRHFd724u7kTrvBUpyD2HU1GAPi+DyMZPc5rBYLERGRl5wN8SJiIhIy2Qy -jF8dUqun4uLi07bPsp/6WkmA8bUsX9v8/v7+jTpeRERERJqeXosqIiIiIi2OilQRERERaXFUpIqI -iIhIi3NhPZH/DOiaVhEREZGmpyOpIiIiItLiqEgVERERkRZHRep5JH/vLhaNGkje7u2NMr9h1DTK -vCIiIiK/ZobjbxvatGkT6enp2O12Ro4cecoBKSkpFBcXc8899zRZyHPd58//mSM/bMHLx4phQEB4 -FL3/8DcCIy5u0HV8W7Ulst9g/FqHNOi8AAX7/kvq2y8x9PE5DT63iIiIyK+ZATw8PAgLC8PpdJKX -l3fKzmlpaVRVVTVZuPPJZXf9mQ6DhoFhkL5qIetfGcctr3zQoGv4BATRd/TEBp3zJxVFhY0yr4iI -iMjJmAGsVitxcXGnLVKLior44osvuP7661m7dm2ThjyvmExE9hvMt/OexzBqMJk8KMvP4bPnkhk8 -aTap817gYNpGWkV0YOjkNwBwlpXw3dsvcTDtazw8zVw88Ld0GzYKk4cnAGsmj6H4yH4ASvMOc/PL -SwhsH+tasqa6mm2L55D55UowDII796RP0ni8rH6uPplffsz2pXOpcORjDWzDpcPvo33vAVQ48lkz -eQwVRQU4S4tZct91APiHtHflAzh27Bi9e/cmPj6eefPmNfrHKCIiIue3Oj+Cavny5QwcOBBvb+/G -zHPeM4wadq/9kLYXd8Nk+vmS4PKCPL6Y+ggdh9xGvz8+hrPs50dfbZw9GS9fG8NmraSqvJS1Ux7A -09uHrjf9HsCtWFw0auAJa6Ytmk1O+lZufHEhXt5WUt9+kS3vTqPv6AkA7P16NVv+NZVrx79KUHQc -juxM8jN3AcePzt78yhL2ffMpu1YvOuXp/oqKCjIyMrBYLGf/IYmIiMgFr043Tm3duhUvLy+6dOnS -2HnOW5vnT2XJvb9hyb3Xk5exk6sees6tvSw/h24Jo4nsNwSzjxXfoGAAnKXF7PvmU3r9v4fx8DTj -bQsg/o4H+PGTJXVeO33lAnomjsXLxxdMJroljGF/6jpX+87l8+k58s8ERccBEBAeTXT/6+q1fzab -jb1797J+/fp6jRMRERE5mVqPpDocDjZs2MCoUaOaIs95y3VN6imYfXy5qGvvE7aX5GTjY2+Fxdfm -2mYPjaAkJ7tO61YWFeAsL+WrGX932+7tb3d9XXQoy+3ygDMVFBR01nOIiIiIQB2K1F27dmEymZg7 -dy5w/NrD0tJSpk2bxpgxYxo94IXOr20oFUUFVJWXuq4hLT5yAL+2YXUa7+0fiJePL0Meew2/NqEn -7WMLDsORvZdWkR1POY+nl4XK4tPfPOVwOLBarTrlLyIiImet1tP9ffr0ITk52fVn+PDhhISEkJyc -jNVqbYqMFzRvWwARfQay+Z+vYNRU4ywr4T/vzaLD4FMflXVjMtFp6O18M2cKzrISACoc+eRnpru6 -dPrNcLa8Ow1HdiYAJbkH2f7vt92mCWwfS2HWbkrzDh2fo6jArb20tJSoqCgGDBhwZjsqIiIi8gtm -gMWLF3PgwAGcTidOp5OpU6dit9tJSkpq7nwCXHH/E6TOe4El9/0fHp6exA64ia433VXn8T0Sk/l+ -yZusfCQRTCYsvja633aP6xrUDoOGYVRX8/kLD3GsohyfgFZ0GzbabQ5bcDg9E5NZNekPeFp88GsT -yqBHZ+LhefwJAxaLhcjISDp06NBwOy4iIiIXLJNhGMbZTFBcXHza9ll2+2nbx9eyfG3z+/v7t+jx -TammupqUu/pxy9QPsQWHN3ccERERkTOm16KeB0pyDgJwePu3mL2t+DbCG6dEREREmlKdn5MqLVPZ -0SN8MW0C5fm5eHr7cNXYZ/Hw1I9VREREzm2qZs5xvq1DuP7pd5o7hoiIiEiDUpHayM6la1pFRERE -WgpdkyoiIiIiLY6KVBERERFpcVSkSoMxjJrmjiAiIiLnCTMcf1vQpk2bSE9Px263M3LkSLdOaWlp -LFu2DC8vL9e2m266ia5duzZtWmmxCvb9l9S3X2Lo43OaO4qIiIicB8wAHh4ehIWF4XQ6ycvLO6FT -RUUFvXr14vrrr2/ygHJuqCgqbO4IIiIich4xA1itVuLi4k5ZpJaXl+Pn59fk4eS4j8aNoMuNI9m1 -ehFFh/bRtkM3rnzgSbztrQAo3J/B9x+8ydGMnThLiwjv0Z/L/zgJTy9vAMryc/jsuWQGT5pN6rwX -OJi2kVYRHRg6+Q3g+Juqti2eQ+aXK8EwCO7ckz5J4/Gy+rnW73fvY2z/8C0Off8ttuBwrvnLC/hf -1J4KRz5rJo+hoqgAZ2kxS+67DgD/kPau+cvyc/h69mQc+zPw8LLQOqYLPe58EP+Qdq59PHbsGL17 -9yY+Pp558+Y12WcrIiIiLVOdrkmtqKggKyuLlJQU3n33XbZs2dLYueRXMtYtY8DDL3H7nE/wMHvx -3fxXXG3Fh7KIuvI6bn5lCcNmfUzhgQz+u2ax2/jygjy+mPoIEX0GkjDrY/onT3G1pS2azZGd33Hj -iwu5dfpyLL42trw7zW38xtmTueTWUdw6fRnWwNZ8/8FbAPgEBHHzK0voO2YiwZ17kDB7FQmzV7kK -1OPzv4YtOJyE2au4ddoyoq+8zlUA/6SiooKMjAx27tzZYJ+ZiIiInLvqVKR27dqVPn36kJCQwMCB -A/nyyy/ZunVrY2eTX7jk1iSsrdriYfYi9tpbyN7ypautfZ9rad/rGqqdlTgOZGAPjST3x+/dxpfl -59AtYTSR/YZg9rHiGxTsaktfuYCeiWPx8vEFk4luCWPYn7rObXyPO5NpHdMZb/9Aoq74DY7szDpn -920dwpGdmzm8czM1NdW073MtPv87CvwTm83G3r17Wb9+fT0+FRERETlf1elh/u3bt3d9HRoaypVX -Xkl6ejo9evRotGByaoHtY6kscbi+L8vP4du3nqOqvIzWF3fB5OHJsbIStzFmH18u6tr7hLkqiwpw -lpfy1Yy/u2339re7fe9h/vlXxRrYmuoqZ53zdk8YjbctgC3/morj4F7a97qGnolj3QplgKCgoDrP -KSIiIue3M3rjlMlkwsNDT69qLsWHsrAFh7u+3/DyODrfkEhkvyHA8UsDsjZ9Vqe5vP0D8fLxZchj -r+HXJvSMM3l6WagsPvnNUyYPT+Kuv4O46++gssTBpjeeYePrTzFownS3fg6HA6vVisViOeMcIiIi -cn6otdIsLS1l8eLFFBQUAFBYWMhXX31F586dGz2c/Gzv12uorqrEWVZC2qLX6DDoVldbSe4hTP/7 -R0PRoX3sWvN+3Sc2meg09Ha+mTMF5/+OvlY48snPTK9XvsD2sRRm7aY079DxOYoKXG1bFkyjcH8G -AN5+dgLaxYBhuI0vLS0lKiqKAQMG1GtdEREROT+ZARYvXsyBAwdwOp04nU6mTp2K3W4nKSkJPz8/ -Lr74Yj744AOKi4vx8PCgb9++dO/evbmzX1DM3j6sGHcnlSWFRF91A11uusvV1nf0BLYtmcPWlBkE -RnSg09DhZG1aW+e5eyQm8/2SN1n5SCKYTFh8bXS/7R6CouPqPIctOJyeicmsmvQHPC0++LUJZdCj -M/Hw9KTtxd1InfcCJbmHMGpqsIdFcPmYSW7jLRYLkZGRdOjQoc5rioiIyPnLZBi/OqRVT8XFxadt -n2W3n7Z9fC3L1za/v7//eT0ejj8C6rK7HiK0W59a+4qIiIicD3Rh6TnjrP4tISIiInJOUZEqIiIi -Ii3OGd3dL03rxhdSmjuCiIiISJPSkVQRERERaXFUpIqIiIhIi6MiVURERERaHBWp0mDS0tIIDQ0l -NTW1UeavqalplHlFRESk5THD8bf9bNq0ifT0dOx2OyNHjjyh4+7du1m7di3FxcUEBAQwcOBAYmNj -mzyw1N+tt97KF198gc1mwzAMOnXqxMsvv8wll1zSoOuEhoaSkJBAu3btGnRegG3btvHXv/6VTz75 -pMHnFhERkZbHDODh4UFYWBhOp5O8vLwTOh08eJAVK1Zwxx13EBISwtGjR6msrGzysHLmnn/+eUaN -GoVhGMyaNYsRI0bw/fffN+gawcHBzJgxo0Hn/MnJfi9FRETk/OUBYLVaiYuLIyws7KSdNmzYwMCB -AwkJCQGgdevWp+wrLZvJZCIhIYH09HTX6fPs7Gx69epFbm4uI0eOJCQkhMGDB7vGOBwORo8eTURE -BLGxsTz99NNUV1e72gcPHkx0dDTR0dGYzWZ27NjhtuaxY8eYPHkynTp1omPHjiQlJZ3wJq6UlBR6 -9OhBeHg4l112GcuWLQMgJyeH7t27k5iYyJdffula55f5RERE5PxTp2tSjxw5QmBgICtWrODtt99m -7dq1OJ3Oxs4mjaCmpoa5c+fSp08fPDx+/vEfPnyYxMREfvvb37Jnzx7eeecdV9uYMWMwmUxkZGSQ -mprKihUrePXVV13tn376KZmZmWRmZtK2bdsT1nziiSfYsGEDmzdvZteuXQQEBDBx4kRX+6JFi5gw -YQLz5s0jOzubd999l7KyMuD40dlt27YxY8YM+vfv71rn008/bYyPR0RERFqIOj3Mv7i4mM8++4yh -Q4cSGBjI8uXLWbt2Lddff31j5xPguuuu4+jRo27brrnmGl566aU6zzF+/HieeuopDMPgsssuY8GC -BW7t2dnZ/Otf/2LAgAEA+Pn5AVBYWMgHH3zA0aNH8fLyIigoiCeffJLk5GT+8pe/1Gnt6dOns2rV -Kmw2GwATJ06kV69eTJ8+HYBXXnmFZ599lvj4eADi4uKIi4ur876JiIjI+adORaqfnx+33HILgYGB -APTt29d1OlYa36pVq856jp+uST0Vm83mKlB/KTMzkzZt2hAQEODadvHFF5OZmVmndfPy8igqKuLu -u+922x4UFOT6+scff6Rr1651mk9EREQuDHUqUtu2bUteXp6rSP3piJic/yIjI8nLy6O4uBh/f38A -9uzZQ1RUVJ3Gt27dGpvNxurVq4mIiDhpn6ioKHbt2kX37t1POY+Pj88JR5NFRETk/FWna1L79u3L -559/TkVFBYZh8PXXX9OxY8fGziYtQFBQELfccgvjxo2juroah8PB448/ftqjsr9kMpm49957uf/+ -+3E4HMDxm6G2bt3q6nPfffcxceJE0tPTAdi3bx8vvvii2zxdunRh+/btZGVlAZCbm9sQuyciIiIt -lBlg8eLFHDhwAKfTidPpZOrUqdjtdpKSkgDo0KEDRUVFzJ07l+rqaqKiohg4cGCzBpem89Zbb/HQ -Qw8RExOD2Wzm97//fZ2vRwWYMmUKzz77LJdffjkmk4mAgAAmTZpEjx49ABg1ahTHjh1j2LBhlJaW -0rZtWyZMmOA2R3R0NM888wxXX301VquViIgIVqxYgdlcp5MBIiIico4xGYZhnM0Ev36U0K/NsttP -2z6+luVrm/+nU9Dn6/hzybFjxwgICGD79u1ER0c3dxwRERE5h+m1qHLW9u7dC8Dnn3+On59fo7xx -SkRERC4sOlcqZ+XAgQPcddddHDx4EF9fX+bPn4+Xl1dzxxIREZFznIpUOSvt2rXjiy++aO4YIiIi -cp7R6X4RERERaXFUpIqIiIhIi6MiVURERERaHBWp56BtS95g05vP1nucYdQ0Qpq6+/LLL9m8eXOt -/aZMmcKDDz5Y7/lrapp3/0RERKThmAFKS0vZtGkT6enp2O12Ro4c6epQWlrK9OnT3QZVV1djs9kY -O3Zs06aVM1aw77+kvv0SQx+f02wZ0tLSCAwM5LLLLmvwubdt28Zf//pXPvnkkwafW0RERJqeGcDD -w4OwsDCcTid5eXluHfz8/HjkkUfcti1cuJBu3bo1XUo5axVFhc22dmVlJY8++igpKSlUV1ezZs0a -pk6dSqtWrRpsjV//3oqIiMi5zQxgtVqJi4s7aZH6azt27MBsNtOlS5cmCShQWeLgmzlTOLz9W/xD -2mELaYe3LcDVXrg/g+8/eJOjGTtxlhYR3qM/l/9xEp5e3lQ48lkzeQwVRQU4S4tZct91APiHtGfo -5DcAqKmuZtviOWR+uRIMg+DOPemTNB4vq59rjWPHjtG7d2/i4+OZN29evfK/9dZbbNq0iR9//BGL -xcLcuXMpLy93Fan5+fncf//9fP7558TExBATE0NQUJBr/I4dO3j22WfZvHkzBQUFXH/99cyePRsf -Hx9ycnIYPHgwubm5FBYWut50FRsby6effurK/vTTT5OSkoJhGPTv359XX331vHrbl4iIyPmmXtek -GobBunXruPrqqxsrj5zExtlP4OFp5rbX1zBwwnTK8nPc2osPZRF15XXc/MoShs36mMIDGfx3zWIA -fAKCuPmVJfQdM5Hgzj1ImL2KhNmrXAUqQNqi2RzZ+R03vriQW6cvx+JrY8u709zWqKioICMjg507 -d57RPphMJgzDwGw2c8899xAWFuZqGzNmDF5eXmRlZbFs2TKys7Pdxu7evZvf/e53bNu2jT179rBz -505ef/11AIKDg9m2bRszZsygf//+ZGZmkpmZ6SpQAZ544gk2bNjA5s2b2bVrFwEBAUycOPGM9kNE -RESaRr2K1IyMDPz9/Wnbtm1j5ZFfcZYUkbXpM/qOegRPLws+9laEXdrPrU/7PtfSvtc1VDsrcRzI -wB4aSe6P39d5jfSVC+iZOBYvH18wmeiWMIb9qevc+thsNvbu3cv69evrvQ+jR48mLi6OqKgoJk6c -iMPhcLUVFBSwdOlSpk2bhre3N23btmXIkCFu42+55RZuuukmKioq2LlzJx06dODbb7+t8/rTp0/n -mWeewWazYTKZmDhxIsuWLav3foiIiEjTqdcbp3bv3u06nSpNozgnG5+AVlhs9lP2KcvP4du3nqOq -vIzWF3fB5OHJsbKSOs1fWVSAs7yUr2b83W27t/+J6/3yFHx9WCwW5syZw5///Geef/55OnXqxOrV -q7n00kvJzMykbdu2p70+NTs7m+TkZEpKSujVqxdms9mt0D2dvLw8ioqKuPvuuxtkX0RERKRp1KtI -zcrKYvDgwY2VRU7CGhBEZbGD6qpKPL28T9pnw8vj6HxDIpH9jh+BzFi3jKxNn7n18fSyUFl84s1T -3v6BePn4MuSx1/BrE3raLA6HA6vVisViOaN96dKlC++88w4PP/wwr7/+OrNmzSI4OJj8/HwqKirw -8fE56bgRI0aQnJzMbbfdBsA777zD0qVL3fr4+Phw9OjRE8a2bt0am83G6tWriYiIOKPcIiIi0vTq -dbq/oKBAN5s0Md/WIbSK6si29+eAYVB8OIvMDSvd+pTkHsLkcfxHWXRoH7vWvH/CPIHtYynM2k1p -3iEAKooKjjeYTHQaejvfzJmC839HXysc+eRnpruNLy0tJSoqigEDBtR7H5KTk3nttdc4ePAge/bs -4dtvv6Vjx44AtGvXju7du/P0009jGAa7d+9mwYIFbuP37duHp6cnAD/++KPretRf6tKlC9u3bycr -KwuA3Nzc/+2eiXvvvZf777/fdfQ1JyeHrVu31ns/REREpOmYDMMwFi9ezIEDB3A6nTidTmw2G3a7 -naSkJFfH6upqnnrqKf72t7/h5/fzXd/FxcWnXWCW/dSnqQHGG8Zp22ubv7ai+VwfD8cLz69nPk7x -kf0ERcUR3KUnZUdz6Dt6AgD7U9exbckcjlWUExjRgXY9ryJr01quHT/VbZ4d/36b9I9T8LT44Ncm -lEGPzsTD05Oa6mN8v+RNMr/8GEwmLL42ut92D+0u+/kGuaqqKnr37s2ll17KO++8U2vmX8rIyOCF -F15g5cqVBAYGkpycTFJSklvhOWrUKDIyMoiPj+eqq64iOzvb9XzeZcuWMWXKFEpLS7nkkkv4v//7 -Pz788EM+/PBDt3VeeuklZsyYgdVqJSIighUrVmA2m6mqquLZZ58lJSUFk8lEQEAAkyZN4oYbbqjX -foiIiEjTMRlGLVViLVSkNn6Rer6YOXMmgYGBJCYmNncUERERaeHqdU2qyNkIDQ3FZrM1dwwRERE5 -B6hIlSYzbNiw5o4gIiIi54h63TglIiIiItIUVKSKiIiISIujIlVEREREWhwVqSIiIiLS4qhIPYfk -793FolEDydu9/bT9ti15g01vPtvg6xtGzWnba8tXmneINU/cw6JR17Lsr7dz8D9f12t8c/vyyy/Z -vHnzKdvT0tIIDQ0lNTX1tPNMmTKFBx98sKHjUVNz+p9PbfmysrIYMmQIF110EfHx8axevbpe40VE -RBqSGY6/TWjTpk2kp6djt9sZOXKkW6fq6mpWrlxJZmYmhmEQFxfH0KFDMZlMzRL6QuXbqi2R/Qbj -1zqkydcu2PdfUt9+iaGPzzlln9ryfffOywSERzFo4nQw4NeP6G3O/auLtLQ0AgMDueyyy07aHhoa -SkJCAu3atWviZLBt2zb++te/8sknn5yyT235/va3v9GpUyeWL1+OYRgn/Hyac/9EROTCYwbw8PAg -LCwMp9NJXl7eCZ1SU1MpKSnhgQceoLq6mgULFrBjxw4uueSSJg98IfMJCKLv6InNsnZFUWGtfWrL -V7Dvv1z5p6fw9PI+o/HNpbKykkcffZSUlBSqq6tZs2YNU6dOpVWrVm79goODmTFjRrNkPNl/t79W -W75t27Yxb948fHx8zmi8iIhIQzIDWK1W4uLiTlmklpeXExERgaenJ56ensTGxtb6JiVpOGsmj6H4 -yH4ASvMOc/PLSwhsH+tqryxx8M2cKRze/i3+Ie2whbTD2xbgaq+prmbb4jlkfrkSDIPgzj3pkzQe -L+vx19t+NG4E/e59jO0fvsWh77/FFhzONX95Af+L2lPhyGfN5DFUFBXgLC1myX3XAeAf0p6hk9+o -U77v/vky+1PXUXxkP+tefAgPs1e9xteWvyw/h8+eS2bwpNmkznuBg2kbaRXRwTU/wLFjx+jduzfx -8fHMmzevXp//W2+9xaZNm/jxxx+xWCzMnTuX8vJyV5E6ePBgMjIyANi/fz9paWl07drVNT4/P5/7 -77+fzz//nJiYGGJiYggKCnLL9vTTT5OSkoJhGPTv359XX33V9Tay3r178/rrr/Pcc8/x2WefER0d -zXvvvUdsbCw5OTkMHjyY3NxcCgsLiY6OBiA2NpZPP/20Tvn+9re/sXz5cjIyMkhISMBisdRrfG35 -s7OzueWWW/j444956KGH+OSTT+jWrZtrfhERkZMyfiEtLc2YP3++8Wt5eXnGq6++amzdutUoKSkx -5s6daxQWFhqGYRhFRUWn/fMcnPZPbWqb/3wf/2sLk641CrJ2u237/IWHjA1TJxjHnJVGuSPf+Pjv -dxvfvPGMq33LgunGqseSDGd5qWHU1Bjfzn3erX353+4wl5u+4gAAIABJREFUlj883MjL2GlUFBUY -n055wPhq5uNua+zd+ImxevKYM8r3kyX332AczUyv9/ja8pcePWIsGj3IWPPEPcber9cYVeVlRunR -I25zFBcXG/7+/kafPn1q3YdfmzlzpnHVVVcZJSUltfa96KKLjO3bt7ttGzZsmDFy5EijoqLCyMnJ -Ma655hrjT3/6k6t90qRJxrXXXmsUFxcbNTU1xp///Ge39l69ehk9e/Y0Nm/ebOTl5Rk33HCDMWrU -KLc1Fi9ebAwePPiM8v3k4osvNv7zn//Ue3xt+Q8cOGCEh4cbQ4YMMd5//32jpKTEOHDgQK1ZRUTk -wlanG6cCAgIIDQ1ly5YtvPzyy4SHhxMQEFD7QGl0zpIisjZ9Rt9Rj+DpZcHH3oqwS/u59UlfuYCe -iWPx8vEFk4luCWPYn7rOrU+PO5NpHdMZb/9Aoq74DY7szCbci9OrS/6y/By6JYwmst8QzD5WfIOC -3dptNht79+5l/fr19V5/9OjRxMXFERUVxcSJE3E4HHUeW1BQwNKlS5k2bRre3t60bduWIUOGuPWZ -Pn06zzzzDDabDZPJxMSJE1m2bJlbnylTptCzZ09at27N8OHDSU9Pr/d+NJa65M/OzmbixIncdttt -+Pn5ER4e3kxpRUTkXFGn16K+++679O3bl7i4OPLz8/noo4/YuHEj/fr1q32wNKrinGx8AlphsdlP -2l5ZVICzvJSvZvzdbbu3v3t/D/PPvwrWwNZUVzkbPuwZqGt+s48vF3Xtfdq5fnmKvT4sFgtz5szh -z3/+M88//zydOnVi9erVXHrppbWOzczMpG3btidcv/qTvLw8ioqKuPvuu0+b1cvLy/V1SEgIlZWV -Z7AnDa+u+W02GwMGDGjCZCIicq6rtUgtLy/nyJEjxMXFAcf/5zNkyBCWL1+uIrUFsAYEUVnsoLqq -8qQ3JHn7B+Ll48uQx17Dr03oGa/j6WWhsrj2m6caWkPlB3A4HFitViwWyxmN79KlC++88w4PP/ww -r7/+OrNmzap1THBwMPn5+VRUVJz0hqTWrVtjs9lYvXo1ERERZ5QLwMfHh6NHj57x+DPVUPlFRER+ -rdbT/T4+PlgsFnbt2oVhGNTU1LB7926d7m8hfFuH0CqqI9venwOGQfHhLDI3rPy5g8lEp6G3882c -KTjLSgCocOSTn1m/08WB7WMpzNpNad6h43MUFTTYPpxWA+UvLS0lKirqjI7mJScn89prr3Hw4EH2 -7NnDt99+S8eOHes0tl27dnTv3p2nn34awzDYvXs3CxYscLWbTCbuvfde7r//ftdlBDk5OWzdurVe -Gbt06cL27dvJysoCIDc3t17jz1RD5RcREfk1M8DixYs5cOAATqcTp9PJ1KlTsdvtJCUlYTKZGDFi -BGvWrGHNmjUYhkFYWBg33HBDc2eX/7n6oef5eubjvH/PYIKi4ogZcCNlR3Nc7T0Sk/l+yZusfCQR -TCYsvja633YPQdFxdV7DFhxOz8RkVk36A54WH/zahDLo0Zl4eHo2xi65aYj8FouFyMhIOnToUO/1 -x44dywsvvMCUKVMIDAwkOTmZpKSkOo9PSUlh1KhRtGvXjvj4eO666y6ys7Nd7VOmTOHZZ5/l8ssv -x2QyERAQwKRJk+jRo0ed14iOjuaZZ57h6quvxmq1EhERwYoVKzCb63RFz1lpiPwiIiK/ZjKMXz2x -u55qexTVLPvJr5X8yfhalq9t/p8ec3O+jpeWY+bMmQQGBpKYmNjcUURERM57jX+YReQ8ERoais1m -a+4YIiIiFwQVqSJ1NGzYsOaOICIicsGo03NSRURERESako6kNjJdcyoiIiJSfzqSKiIiIiItjopU -EREREWlxVKSKiIiISItjhuNv49m0aRPp6enY7XZGjhzp1qmoqIiPPvqI3NxcrFYrv/nNb4iMjGyW -wCIiIiJy/vMA8PDwICwsjJiYmJN2+uCDD+jQoQNjx45l2LBhLFmypNaH1IuIiIiInCkPAKvVSlxc -HGFhYSd0qKio4NChQ/Tq1QuANm3a0LNnT7777rumTSoiIiIiF4w6XZNaVVWF0+l0fR8cHExubm6j -hRIRERGRC1utRaqPjw+hoaFs2rSJyspKMjIyWLt2LSUlJU2RT0REREQuQHU6knr77bdz9OhRFixY -wJ49e7jqqquw2+2NnU1ERERELlB1euNUYGAgt956q+v71atXExIS0mihREREROTCVqcjqXv37qWy -shKAPXv2sH37dteNVCIiIiIiDc0MsHjxYg4cOIDT6cTpdDJ16lTsdjtJSUkAHDlyhBUrVuB0OgkK -CuKuu+7CarU2a3AREREROX+ZDMMwzmaC2p6XOquWa1fH17J8bfP7+/u36PEiIiIiUn96LaqIiIiI -tDgqUkVERESkxVGRKiIiIiItjopUEREREWlxVKSKiIiISIujIlVEREREWhwVqSIiIiLS4pgBsrOz -Wbt2Lbm5uXh7ezNo0CA6d+7s6lRTU8Mnn3zCrl278PT05PLLL+eyyy5rttAiIiIicn4zG4bBhg0b -GDRoEGFhYezZs4eUlBTGjh3relD9119/TVFREX/605+orKzk7bffJigoiOjo6GaOLyIiIiLnIw+T -ycSIESMIDw/HZDIRGxtLSEgIR44ccXXasmULAwYMwMPDA6vVyhVXXMGWLVuaMbaIiIiInM9OuCa1 -pqaGgoIC2rRp4/q+qKiINm3a8NVXX5Genk5wcDD5+flNHlZERERELgzmX2/YuHEjMTExBAYGAnDs -2DE8PDwwmUzs3bsXp9NJmzZtqKysbPKwIiIiInJhcCtSMzMz2bx5M0lJSa5tFosFOF6sJiYmApCV -leW6XlVEREREpKG5TvcfPHiQpUuX8rvf/Q6bzebWKTg4mOzsbNf3Bw4cIDg4uOlSioiIiMgFxQNg -//79LFy4kOHDhxMSEnJCp169erF+/Xqqq6spKSkhNTWVnj17NnlYEREREbkwmKuqqpg/fz4mk4n3 -3nuP6upqAMLCwhg5ciQA8fHxFBYWMnv2bDw8PBg8ePBJi1kRERERkYZgMgzDOJsJiouLT9s+y24/ -bfv4Wpavbf7aro1t7vEiIiIiUn96LaqIiIiItDgqUkVERESkxVGRKiIiIiItzgkP8xd3uuZURERE -pOnpSKqIiIiItDgqUkVERESkxVGR2gQ+GjeCQ99vqrWfYdQ0QRoRERGRls8MkJ2dzdq1a8nNzcXb -25tBgwbRuXNnV6fS0lI2bdpEeno6drvd9ZB/aTgF+/5L6tsvMfTxOc0dRURERKTZmQ3DYMOGDQwa -NIiwsDD27NlDSkoKY8eOdd005OHhQVhYGE6nk7y8vGaOfH6qKCps7ggiIiIiLYbZZDIxYsQI14bY -2FhCQkI4cuSIq0i1Wq3ExcVdsEVqWX4OX8+ejGN/Bh5eFlrHdKHHnQ/iH9IOgHcSunPH2xvw9g8E -YGvKDI5VlNH77nGuOY7u+YH/LJxF0cF9tO3YnSvvfwJveysqHPmsmTyGiqICnKXFLLnvOgD8Q9oz -dPIbrvU/ey6ZwZNmkzrvBQ6mbaRVRAdXe011NdsWzyHzy5VgGAR37kmfpPF4Wf3q1A5w7Ngxevfu -TXx8PPPmzWv8D1VERETkNE54BFVNTQ0FBQW0adOmOfK0SGmLXsMWHM7giTMB2J+6zq3Aq4tDaRsZ -8NeX8PYPZMMr4/lu/lSufOAJfAKCuPmVJez75lN2rV50ytP95QV5fDH1EToOuY1+f3wMZ9nPr2tN -WzSbnPSt3PjiQry8raS+/SJb3p1G39ET6tQOUFFRQUZGBhaLpb4fj4iIiEiDO+HGqY0bNxITE0Ng -YGBz5GmRfFuHcGTnZg7v3ExNTTXt+1yLj71Vvea45NYkrK3a4mH2IvbaW8je8kW9xpfl59AtYTSR -/YZg9rHiGxTsaktfuYCeiWPx8vEFk4luCWPYn7quzu0ANpuNvXv3sn79+nrlEhEREWkMbkdSMzMz -2bx5M0lJSc2Vp0XqnjAab1sAW/41FcfBvbTvdQ09E8e6FYr1Edg+lsoSR73GmH18uahr7xO2VxYV -4Cwv5asZf3fb7u1vr1P7LwUFBdUrk4iIiEhjcRWpBw8eZOnSpdx5553YbLbmzNTimDw8ibv+DuKu -v4PKEgeb3niGja8/xaAJ0wHwMHtRUVTguia15ljVaecrPrzfdT3rTzy9LFQW1//mKW//QLx8fBny -2Gv4tQmtd/svORwOrFarTvmLiIhIs/MA2L9/PwsXLmT48OGEhIQ0d6YWZ8uCaRTuzwDA289OQLsY -MAxXuz0skox1y6muquTAd+vZs+GjE+bYt/ETqqsqqSorIW3Ra1w88Ldu7YHtYynM2k1p3iEAKooK -6hbOZKLT0Nv5Zs4UnGUlx8c68snPTK9b+/+UlpYSFRXFgAED6rauiIiISCMyV1VVMX/+fEwmE++9 -9x7V1dUAhIWFuZ6HunjxYg4cOIDT6cTpdDJ16lTsdvsFc1lA24u7kTrvBUpyD2HU1GAPi+DyMZNc -7X3uHsfXsyeTsW4Zkf2G0DNx7AlFoC2kHSvGJ1JZXEB0//+jy013ubcHh9MzMZlVk/6Ap8UHvzah -DHp0Jh6enrXm65GYzPdL3mTlI4lgMmHxtdH9tnsIio6rUzuAxWIhMjKSDh06nM1HJSIiItIgTIbx -i0OCZ6C4uPi07bPsJ177+Evja1m+tvl/ekxWY40XERERkaan16KKiIiISIujIlVEREREWhwVqSIi -IiLS4pzwxilxp2taRURERJqejqSKiIiISIujIlVEREREWhwVqSIiIiLS4pgBsrOzWbt2Lbm5uXh7 -ezNo0CA6d+7s6lRbu4iIiIhIQzIbhsGGDRsYNGgQYWFh7Nmzh5SUFMaOHYu/vz+1tYuIiIiINDSz -yWRixIgRrg2xsbGEhIRw5MgR/P39qa1dRERERKShnXBNak1NDQUFBbRp0+akA2prFxERERE5WycU -qRs3biQmJobAwMCTDqitXURERETkbLkVqZmZmWzevJnrrrvupJ1raxcRERERaQiuIvXgwYMsXbqU -3/3ud9hsthM61tYuIiIiItJQzAD79+9n8eLFDB8+nJCQkBM61dYuIiIiItKQzFVVVcyfPx+TycR7 -771HdXU1AGFhYYwcOZLa2kVEREREGprJMAzjbCYoLi4+bfssu/207eNrWb62+Wt7DFZzjxcRERGR -+tNrUUVERESkxVGRKiIiIiItjopUEREREWlxVKSKiIiISIujIlVEREREWhwVqSIiIiLS4qhIlXOG -YdQ0dwQRERFpImaA7Oxs1q5dS25uLt7e3gwaNIjOnTu7OmVlZfH5559z9OhRTCYTffv25Yorrmi2 -0HLhKdj3X1Lffomhj89p7igiIiLSBMyGYbBhwwYGDRpEWFgYe/bsISUlhbFjx7oeVJ+ZmcmgQYNo -164deXl5vP7664SFhREVFdW86eWCUVFU2NwRREREpAmZTSYTI0aMcG2IjY0lJCSEI0eOuIrUa665 -xtXepk0b2rdvT3l5eZOHPRcd3vEdO5e9w7HKckpyD9Hn7nFseus57GGRDPn7awDUVFezbfEcMr9c -CYZBcOee9Ekaj5fVD4DC/Rl8/8GbHM3YibO0iPAe/bn8j5Pw9PIGoCw/h69nT8axPwMPLwutY7rQ -484H8Q9pB8A7Cd254+0NePsHArA1ZQbHKsroffc41/jPnktm8KTZpM57gYNpG2kV0YGhk9+oNV9D -7N9H40bQ797H2P7hWxz6/ltsweFc85cX8L+oPRWOfNZMHkNFUQHO0mKW3HcdAP4h7V35AI4dO0bv -3r2Jj49n3rx5jfozFRERkcZ3wjWpNTU1FBQU0KZNG7fthmFQUlJCamoq5eXldOjQoclCnusOpm2k -z6gJtOnQje8/nMuNzy8gb/d2SvMOA5C2aDZHdn7HjS8u5Nbpy7H42tjy7jTX+OJDWURdeR03v7KE -YbM+pvBABv9ds9jVnrboNWzB4STMXsWt05YRfeV1rgKwrsoL8vhi6iNE9BlIwqyP6Z885Rfznz7f -2e4fwMbZk7nk1lHcOn0Z1sDWfP/BWwD4BARx8ytL6DtmIsGde5AwexUJs1e5FagAFRUVZGRksHPn -znrtt4iIiLRMJxSpGzduJCYmhsDAQLft6enpzJ49m88//5ybb74Zs9ncZCHPdQHtoglsH4s9NJLw -nv3xtrfCr00oxUcOAJC+cgE9E8fi5eMLJhPdEsawP3Wda3z7PtfSvtc1VDsrcRzIwB4aSe6P37va -fVuHcGTnZg7v3ExNTTXt+1yLj71VvTKW5efQLWE0kf2GYPax4hsU7GqrLd/Z7h9AjzuTaR3TGW// -QKKu+A2O7Mx65bfZbOzdu5f169fXa5yIiIi0TG6VZmZmJps3byYpKemEjp07d6Zz587k5+ezePFi -rrjiCi655JImC3o+MJlO/LqyqABneSlfzfi7W19vf7vr67L8HL596zmqystofXEXTB6eHCsrcbV3 -TxiNty2ALf+aiuPgXtr3uoaeiWPdCs3amH18uahr7xO21yXf2e4fgMcv/tFjDWxNdZWzztl/EhQU -VO8xIiIi0jK5KoODBw+ydOlS7rzzTmw22ykHBAUFER8fzw8//KAitQF4+wfi5ePLkMdew69N6En7 -bHh5HJ1vSCSy3xAAMtYtI2vTZ652k4cncdffQdz1d1BZ4mDTG8+w8fWnGDRhOgAeZi8qigpc16TW -HKtq0HyNOf4nnl4WKotPf/OUw+HAarVisVjOeB0RERFpGTwA9u/fz8KFCxk+fDghISFuHcrLy3n/ -/fc5evQoAAUFBezYsYPw8PCmT3s+MpnoNPR2vpkzBef/jo5WOPLJz0x3dSnJPYTJ4/iVGUWH9rFr -zftuU2xZMI3C/RkAePvZCWgXA4bhareHRZKxbjnVVZUc+G49ezZ81KD5GnX8/wS2j6UwazeleYeO -z1FU4NZeWlpKVFQUAwYMqNe8IiIi0jKZq6qqmD9/PiaTiffee4/q6moAwsLCGDlyJFarlU6dOvHv -f/+bwsJCDMMgPj6eyy+/vJmjnz96JCbz/ZI3WflIIphMWHxtdL/tHoKi4wDoO3oC25bMYWvKDAIj -OtBp6HCyNq11jW97cTdS571ASe4hjJoa7GERXD5mkqu9z93j+Hr2ZDLWLSOy3xB6Jo6tV5FYW77G -Hg9gCw6nZ2Iyqyb9AU+LD35tQhn06Ew8PD0BsFgsREZG6oY+ERGR84TJMH5xyO0MFBcXn7Z9lv3E -axd/aXwty9c2/0+PyWqp40VERESk/vRaVBERERFpcVSkioiIiEiLoyJVRERERFocPZG/kemaVhER -EZH605FUEREREWlxVKSKiIiISIujIvUcYhg1zR2hUaWlpREaGkpqamqzrF9Tc35/viIiIucSD4Ds -7Gz++c9/8o9//IMZM2bwww8/nHJASkoKc+bMabKAclzBvv/yyZP3NneMMxIdHU1ISAhhYWH069eP -f//73yftFxoaSkJCAu3atWvihLBt2zZ+85vfNPm6IiIicnJmwzDYsGEDgwYNIiwsjD179pCSksLY -sWNPuKknLS2Nqqq6v/ddGk5F0enfW9/SrVy5kp49e/LVV18xYsQIysrKGDFihFuf4OBgZsyY0Sz5 -8vLymmVdEREROTkPk8nEiBEjCA8Px2QyERsbS0hICEeOHHHrWFRUxBdffMGVV17ZTFEvTBWOfJY9 -lMAXUx8h54etLLnvOpbcdx1rJo8BoHB/Bov/ONTtUgBnaTELkwZQXVUJwEfjRrBnwwo+fvT/sTBp -AJ89+yCVRQWu/jXV1fxn4Ww+fPAmPvzTjXw18zGqykvdchw7dowePXpw9913n/G+mEwm+vfvzz/+ -8Q8ee+wx1/bBgwcTHR1NdHQ0ZrOZHTt2uI3Lzs6mV69e5ObmMnLkSEJCQhg8eLBbtsmTJ9OpUyc6 -duxIUlLSCU9VSElJoUePHoSHh3PZZZexbNkyAHJycujevTuJiYl8+eWXrhy/nN/hcDB69GgiIiKI -jY3l6aefdr0+uLZ8O3bsICIiwu1SgsLCQkJCQqioqDjjz1JEROR8d8I1qTU1NRQUFNCmTRu37cuX -L2fgwIF4e3s3WTgBn4Agbn5lCX3HTCS4cw8SZq8iYfYqhk5+A4DA9rHYQtqRvfUr15h9mz6lfa8B -eHr9/LPKWLeMAQ+/xO1zPsHD7MV3819xtaUtms2Rnd9x44sLuXX6ciy+Nra8O80tR0VFBRkZGezc -ufOs9+m6665j9+7dFBUVAfDpp5+SmZlJZmYmbdu2PemYw4cPk5iYyG9/+1v27NnDO++842p74okn -2LBhA5s3b2bXrl0EBAQwceJEV/uiRYuYMGEC8+bNIzs7m3fffZeysjLg+NHbbdu2MWPGDPr37+/K -8emnn7rGjxkzBpPJREZGBqmpqaxYsYJXX321Tvm6du1KTEwMq1atcvX94IMPuOmmm/Dx8TnLT1JE -ROT8dUKRunHjRmJiYggMDHRt27p1K15eXnTp0qVJw0ndxF13Bz9+ssT1feaGlcRcc6Nbn0tuTcLa -qi0eZi9ir72F7C1futrSVy6gZ+JYvHx8wWSiW8IY9qeucxtvs9nYu3cv69evP+u8drsdHx8fDh8+ -XOcx2dnZTJw4kdtuuw0/Pz/Cw8NdbdOnT+eZZ57BZrNhMpmYOHGi60gpwCuvvMKzzz5LfHw8AHFx -cdxxxx11WrewsJAPPviAl156CS8vL4KCgnjyySd544036pzvgQcecOu/YMEC7rrrrjrvu4iIyIXI -7WH+mZmZbN68maSkJNc2h8PBhg0bGDVqVJOHk7qJ6DuQ7975B+UFuWAyUXzkABd1ueyU/QPbx1JZ -4gCgsqgAZ3kpX834u1sfb3/7CeOCgoIaJK/D4aCiooKwsLA6j7HZbAwYMOCE7Xl5eRQVFZ1wGcIv -s/7444907dr1jLJmZmbSpk0bAgICXNsuvvhiMjMz65QP4Le//S0PP/wwhw4dwmQysWfPHq6++uoz -yiMiInKhcBWpBw8eZOnSpdx5553YbDZXh127dmEymZg7dy5w/Pq/0tJSpk2bxpgxY5o+8QXK08tC -ZfHJb57y8DRz8cDfkrFuOWYfK9FXXQ8m0ynnKj6UhS34+JE+b/9AvHx8GfLYa/i1CT1tBofDgdVq -xWKxnPmOACtWrKBTp05uv2dnqnXr1thsNlavXk1ERMRJ+0RFRbFr1y66d+9+ynl8fHw4evToCdsj -IyPJy8ujuLjYdSPhnj17iIqKqnNGLy8v7r77bv75z3/i5+fHiBEjMJ3m5yMiIiL/O92/f/9+Fi5c -yPDhwwkJCXHr0KdPH5KTk11/fuqTnJyM1WptltAXosD2sRRm7aY07xAAFb+48Qmg45DbyFi/nL1f -ryH2mptOGL/36zVUV1XiLCshbdFrdBh06/EGk4lOQ2/nmzlTcJaVHJ/bkU9+Zrrb+NLSUqKiok55 -tLCuvvrqK8aNG8eTTz55VvP8xGQyce+993L//ffjcBw/OpyTk8PWrVtdfe677z4mTpxIevrxfdq3 -bx8vvvii2zxdunRh+/btZGVlAZCbmwscPyJ7yy23MG7cOKqrq3E4HDz++OP1PrNwzz33MH/+fN5/ -/32d6hcREakDc1VVFfPnz8dkMvHee++57loOCwtj5MiRzRxPfmILDqdnYjKrJv0BT4sPfm1CGfTo -TDw8PQHwDWpLQLsYSnIOEhAefcJ4s7cPK8bdSWVJIdFX3UCXm34ulHokJvP9kjdZ+UgimExYfG10 -v+0egqLjXH0sFguRkZF06NDhjPLfdNNNmEwm2rdvz8yZM7nlllvOaJ6TmTJlCs8++yyXX345JpOJ -gIAAJk2aRI8ePQAYNWoUx44dY9iwYZSWltK2bVsmTJjgNkd0dDTPPPMMV199NVarlYiICFasWIHZ -bOatt97ioYceIiYmBrPZzO9//3v+8pe/1CtjWFgYnTt3Zu/evcTFxdU+QERE5AJnMgzDOJsJfv2o -n1+bZT/x2sZfGl/L8rXN/+tnuZ5v4+vjm9efJjDiYuKud78p6KNxI7jsrocI7danwdaS+rvvvvu4 -5JJLeOCBB5o7ioiISIun16KeJw7vSOXwjlQ6Dkk4RY+z+reInKV169axbt06XcctIiJSR+bau0hL -dqyygqXJN+Nl9ePKB57Ew+zV3JHkF8rKyoiLi8NutzN37tyzvulMRETkQqHT/S18vIiIiMiFSKf7 -RURERKTFUZEqIiIiIi2OilQRERERaXFUpF5ADKPmjMZ9NG4Eh77f1MBpTq6qqopx48ZRVlbWJOud -zJQpU3jwwQfrPa6m5sw+XxGRU0lPT+fll1+uU9+z/fuzOf/+TUtLIzQ0lNTU1NP2O9O/n2tT29/f -teXLyspiyJAhXHTRRcTHx7N69ep6jW+pavv9q8/v55nwAMjOzuaf//wn//jHP5gxYwY//PCDW6e0 -tDSeeuopnnvuOdefHTt2NFooaXgF+/7LJ0/e29wxajVy5Ehat/7/7N15WFXV+sDx74HDfBhEhEAQ -kJAhNTRnLU3Q7FpWYpph9+bYdNMms8jKSrK0W94ccEjNBtHUMjVzSFEyyQFNnPAKgiCozKOHQdi/ -P/x58sRwDohA+n6ep+ehvda79ruXh3UWe6+9d2usra112y5dusTo0aPx9PTEw8ODJUuW6MU89thj -ODk54eXlhaenJ4MHD+b48eNNmnd8fDwPPPDATWs/JycHZ2dnxo4dy9ixY/n+++91ZZWVlbz66qv4 -+voSGBhYrX8MOX/+PA8//DA+Pj5069aNX3/9Va98zpw5uv22b9++1nb27dvHwIED+de//qWX3/WG -DRtG9+7d65Wfofj//Oc/hIWFMWjQIDIyMhrU7t+5fw8ePEhISAju7u4EBATwww8/1Cs/Q/HSv83b -v3feeSexsbF89tlnBvdV0/hZH805/rq6uhIaGooaG5cXAAAgAElEQVS7u3uDcr8RxozfhvKbOnUq -fn5+pKSkEBsby7333luv+JbK0OfPULmhz49BVVVVyqpVq5Tz588rVVVVSmJiovLBBx8ohYWFyjW/ -//67smXLFqUmhYWFdf73EdT5nyGG2r/V4xtLRvx+ZduMiQ2K3TT1CSUj/vdGzqi6qKgoZdiwYdW2 -Hz58WFm3bp1SVVWlHDlyRDEzM1PS09N15Y8++qjyxRdfKIqiKFVVVcr8+fOVjh071rqf5cuXK6tW -raq1fObMmcq///3veuW+c+dOJSQkpF4x1+8vOjq6zjrZ2dlKr169aiz76KOPlMcff1ypqKhQcnJy -lE6dOim7du0yev/9+/dXFixYoCiKoiQkJCgeHh56/Xu9O++8s9Z2/vnPfypr166ttXzlypVKSEiI -0q1bN6Nzq0/81KlTlXnz5jWo7b9r/1ZWVirDhg1TDhw4oFRVVSnbt29XrKysam3/r+oTL/3bfP1b -UlKi+Pv7K6dOnap1X7WNn8ZqKeOvIQ0Znw25kfH7Gn9/fyU2NraRMjKeMd8fN8rQ56+uckOfH0NM -VCoVo0ePpm3btqhUKnx8fHBxceHSpUu6iaxWq8XGxqZ+s1/RKC6eOMSuWS+yfcYEvn9hKOcP7WH9 -cw+y44M/z4rmpyXx63/fZMPkR/hu/P38Nv9tKivKACgtyGXjy6H8OvcNMk8dYf1zQ1j/3BC2z9B/ -qHzy3p/Z9NrjrJ0YzOapo0g7uFuvvOJyMXv+8xqrn76Pza+Ppuhiml75lStX6NKlC2PHjm3wsf7n -P/9h1qxZ1bZ36dKF0NBQVCoVHTp0wNbWttbnjapUKkJDQ0lISKh2+ebChQs89NBD7Ny5kyFDhui2 -5+bm8sQTT+Di4kLv3r05efKkXtyJEycYM2YMAQEB3HHHHYwdO5bS0lIAMjMz6dy5M2FhYezduxdv -b2+8vb0JCQnR65sZM2bg5+dHhw4dGDdunN6jyUaOHMnbb7/Nyy+/jFarrXe/ffHFF7z33nuo1Woc -HR157bXXWLp0qVGxBQUFHDlyhOeeew4APz8/xo0bx+LFi+udh6IoODo61liWnp7Ohx9+yOuvv17v -do2Nb926dYPaNqQl96+JiQk//vgj3bt3R6VSMWjQIDp27MixY8eMarM+8dK/zde/1tbWTJ06lfnz -59dap7bx01jNNf6GhIToxk21Wl3tKq2h8dnQ+Nq9e3cOHz7MyJEjcXJyonv37iQlJQHGjd+G8ps6 -dSr+/v4kJiYSGhpa73hD+aenp9OtWzeysrIYM2YMLi4ueu3f6PfHNZ9++imxsbE1lhn6/NVVXp/P -T02qrUmtqqoiLy8PJycn3bbS0lJSU1OJiori22+/5fDhw0bvQNy4jKOx9Bj/Jk6+nTj2w3Ie+ngV -2YnHKcm+CEDRhVS8+g5h2GfrGb7wZ/LPJ/G/7esAsLR3ZNhn6+k5MRzngC6ERm4lNHIrg2f8+SWQ -sm8bh7+ZS98XPuDxpTu596WPuFJWqpfDH2si6fjYeB6btxErh9Yc+36ZXnlpaSlJSUnVBhCjjzEj -g8LCQgIDA2utU1VVxfjx43nxxRf1Pp9/rbN8+XJ69OiBicmfH+/Vq1cTHBzMhAkT+Oabb2jVqpWu -bOLEiZiZmZGamsrGjRtJT0/XazMxMZFRo0YRHx/P2bNnOXnypO5L0NnZmfj4eObPn0+/fv1ITk4m -OTmZX375RRf/3nvvERMTQ1xcHKdPn8be3p7w8HBdua+vL3v27MHNzY3evXuzf7/x638rKys5f/48 -fn5+zJkzhw0bNtCxY0cSExONilcUBa1WqzcodurUqUH/jhqNptZBcuLEiURERGBn4LnJtTEmXqvV -Nrj92vxd+vf6fFNSUvD39693+4bipX+bt38fffRRNmzYUGOZMeNnXZpz/P3ll19042abNm2qtWlo -fDY0vl5r44033uD06dO4uLjoJuPGjN+G8pszZw4JCQl4eXmxZcuWescbk//FixcJCwvj0Ucf5ezZ -s6xcuVJXdiPfH4BuiUlJSQlFRUVUVVXpnaS8pq7PnzHlxnx+alLtjVOxsbG0b98eBwcH3ba77roL -rVaLl5cXOTk5rF27FpVKRZcuXYzekWg4e3dvHDx8sHP1xMHDBwu7Vtg4uVJ06Tw2Tnfg0eN+ACq0 -JRRmpGDn6knWmWMEGNn+yU1f03XMSzh6Xx047dt6Y9/WW6/OPU+9TOv2V1v06vMA/9uxTq9co9GQ -kpLS4LVQKSkp+Pj41Fnn/fffx87OjhkzZlQrmzZtGh988AGKonDPPfewatUqXdmyZcuIjIwkJiam -2i9HXl4eGzZsIDs7GwsLC9q0acOgQYO4ePGirs4jjzwCXH0xw+nTp/H19eXAgQNGH9u8efPYunUr -Go0GgPDwcLp168a8efN0dUxMTJg6dSr/+Mc/GDhwIDt27KBz584G29ZqtZiZmWFiYsLu3bspKioi -ICBA70t7yJAh5OTk6MX179+fTz75BAcHB4KCgvj888+ZMmUKsbGxhIeH4+zsbPTxVVVVkZ6ezv79 -+5kyZUq18uXLl2NtbU1oaGi9B9D6xPv6+vLzzz/z0EMP6Z0Rq+v4Dfk79O/1Pv30UwYOHIinp6fR -7RsbL/3bPP17jaOjI5cvX6a8vLzamShjxs+6NNf4a4gx47Mx42tERARdu3YFrp55rPe6yJvImPzT -09P55ptvGDBgAEC1K9sN/f4AWLFiBZs3b6a0tJSdO3fy/vvv89JLLzFixAi9enV9/owpr+vzUxe9 -SWpycjJxcXGMGzdOr5KHh4fuZ1dXV/r27UtCQoJMUpuYSlXzz5dzMzmw7CMqtJdpfWcgKhNTrlwu -NrrdwgupOHjUPUCZqP/8qFg5tKayorxandou9RqjvLwcM7O6X+l64sQJPvjggxrLPv74Y8aPH19j -2aBBg/j222+ZPn06n3zyiW4wAHR/3V7/l/1fpaenM3nyZIqLi+nWrRtqtZqCggIjjgqys7MpLCys -tgyipr5KTU1lypQpDBs2zOgvHI1Gg6IolJWV8dNPPwHw22+/4erqqquzdevWOttYu3Yt77zzDkOH -DqVXr168+eab1e5MrcuGDRt49913uffee7nzzjv1ytLS0pg5c2atl5EMqU/80KFDWb58OUOHDmXZ -smW6s0KGjr8uLb1/rxcdHc2SJUuq3ThkLEPx0r/N07/XU6vVNU4CjBk/69Jc468hhsZnY8fX64/N -xcWFsrIyo3O4mYzNX6PR6CaotWnI9wfAW2+9xdNPP03Xrl2pqKjg6NGjmJqa1li3ts+fMeV1fX7q -ojsfn5GRwYYNGxg1apTBD5FKpdI7lS+aV8ynr+Pd70EGvbOIrk9OxrVTj2p1TM3MKSvKrzFe4+xG -QXrKDedRUFBAeXn1yasx3N3dSUtLq7PO2rVrG3SZrV27duzcuZPAwEB69uxJdHS0rszZ2Znc3Fzd -GtOajB49mtGjR7Nt2zYiIiK4//77q9WxtLSsdrYHrq4z02g0bNu2jVOnTun+O3LkiF69ZcuW8cAD -D/Dqq6+ydOnSeq0B79ixo96Z3djYWDp16mR0vKenJytXriQmJobZs2dz7NixesUPHz6cY8eOkZaW -Vu0M88aNGzE1NaVfv374+voyYsQIjh07hq+vL3l5eQbbrk/8V199xcCBA4mNjW3wZc+atOT+vebQ -oUM8/fTTrF+/njvuuMPotusTL/3bvP1bWlpKVVVVjd/PxoyfdWmu8dcQQ+OzseOrIbWN3zdbY+Vv -zPdHXd/P06dPZ+nSpTzyyCMsW7asxjp1ff6MKW/o58cErp6tWLNmDSNHjsTFxUWvQklJCevWrdN9 -IeTn5/Pbb78REGDsxWRxsxVnXUD1/380FF44x+nta6vVcfDwIT81kZLsCwCUFv75Be/3wEgOf/s5 -BenJ/99eBsd//LJeOZSUlODl5WXwr73a+Pj4UFhYqHcZ53q5ubl4enqyaNGiBrWvUqmYPHkyGzZs -4J133tGtnXF3d6dz587MnDkTRVFITEzUu1QFcO7cOd1flmfOnKnxpozAwECOHz9OamoqAFlZWbr9 -Pvvsszz//PO6s6+ZmZl6g9Dbb7/N7t27iY2N5cEHH6z3sT3zzDO8//77lJeXc+nSJSIjI5kwYYLR -8bt376awsBC4un5qzZo1uhtR6sPNzY38fP0/hF544QXOnDmj+2/dunV06tSJM2fO6J0dURSFvn37 -VrvEZGw8XB2b3Nzc6p23IS25f+HqpC40NJS1a9fWeomvtv41Nh6kf5u7f7dv3653w8z1DI2fhjTX -+GuIofHZmPHVGLWN3zdbY+RvzPdHXd/PRUVFBAYGMmzYMN5//30uXLhQYxt1ff4Mld/I50ddUVHB -119/jUqlYvXq1VRWVgJXf2HHjBmDjY0Nd955J99//z1FRUWYmJjQs2dPo9c7iJuv54Q3iV+/hCNR -83Fo54vf4JGk7t+pV0fj3JauYZPZOv1pTM0tsXFyJfitBZiYmuIbPBylspLo2S9zpVSLpX0rOg03 -/ksCwNzcHE9PT3x9fRt0DCqVikmTJjFnzhz+85//VCtXFKVB7f7VtUXm1w/GUVFRjB8/Hnd3d4KC -gnjqqaf0FufPmzePiIgI3n77bTp27Mizzz5b7VmH3t7efPjhh9x3331YWVnRrl07fvrpJ9RqNRER -EcyaNYtevXqhUqmwt7dn+vTpuuUyzzzzzA09O+/pp58mJSWFzp07Y2ZmxqxZs+p1Jik+Pp4XXniB -4uJifHx82Lp1a53LH2pTUlKCpaVlveOuMTU15YcffiAnJ6dBd5JbWlpSXGz8MhdjteT+vXz5MoMH -D8bU1JThw4frLmPec8891S6T19S/9YmX/m2+/lUUhTlz5tR6udTQ+GlIc46/hhganw2Nr8aoa/y+ -2W40f2O+P+r6fra1tWXq1KnA1c/wu+++W62Ooc+fMeUNpVJu8NN3/QL3miw0cDfoNAO7N9S+ra3t -LR1/O6moqKBv37588MEHN/XB+H9HOTk5PPTQQw1e29lYfH19OXPmTI1lY8eOZciQIYwaNapBbZeW -lnLHHXdw6dIlLCws6h3/2muv4e3tzQsvvFDvWOlfw6R/63Yz+3fmzJmcO3euzkdz3ej4KeOvqI2h -z58xn8+Guvl/JghhJDMzMzZt2sTTTz/Nvffe2+AnBdyqkpKSmDjx6vNthw4dyqOPPtok+/300091 -b6G7dqWlJpMmTSI8PJxt27YxbNiweuc3a9YsRowYUe8v+Llz53L48GEyMjJ49dVX6xV7Penfmkn/ -Gudm9e/x48c5ceIEX331VZ3t1DR+/v7777VeAs7Ozta7QUbGX1ETQ58/Yz+fDSVnUlt4vBC3g61b -t/Lbb78xY8aMWu8sFQ0n/XtzSf8KcXPIJLWFxwshhBBC3I7kOVJCCCGEEKLFkUmqEEIIIYRocWSS -KoQQQgghWhyZpAohhBBCiBZHDVffTb5z506ysrKwsLAgODi42hulEhMT2blzJ0VFRdjb2zNw4MB6 -vR9WCCGEEEIIY6kVRSEmJobg4GDc3Nw4e/YsUVFRTJkyRXfneUZGBj/99BNPPPEELi4u5OTk6N6c -IYQQQgghRGNTq1QqRo8erdvg4+ODi4sLly5d0k1SY2JiGDhwIC4uLgANemWhEEIIIYQQxqr2xqmq -qiry8vJwcnLSbbt06RJ9+/blp59+IisrCw8PD+69917Mzc2bNFkhhBBCCHF7qHbjVGxsLO3bt8fB -wUG3raioiF27dtG1a1dGjRpFTk4OO3fubNJEhRBCCCHE7UNvkpqcnExcXBxDhgzRq2RjY8MjjzyC -q6srVlZW9OzZk8TExCZNVAghhBBC3D50k9SMjAw2bNjAqFGj0Gg0epXatGlDdna27v//Wi6EEEII -IURjMgFIS0tjzZo1jBw5Undz1PV69uxJdHQ0paWlKIrCvn376NChQ5MnK4QQQgghbg/qiooKvv76 -a1QqFatXr6ayshIANzc3xowZA4Cvry+FhYUsX76cyspKvLy8GDhwYHPmLYQQQgghbmEqRVGUG2mg -qKiozvKFdnZ1lk8zsHtD7V97TNatGi+EEEIIcTuS16IKIYQQQogWRyapQgghhBCixZFJqhBCCCGE -aHFkkiqEEEIIIVocmaQKIYQQQogWRyapQgghhBCixZFJqmh08euXsv+LWc2dhhBCCCH+xtQA6enp -7Ny5k6ysLCwsLAgODiYgIACAkpIS5s2bpxdUWVmJRqNhypQpTZ+xEEIIIYS45akVRSEmJobg4GDc -3Nw4e/YsUVFRTJkyBVtbW2xsbHjjjTf0gtasWUOnTp2aKWUhhBBCCHGrU6tUKkaPHq3b4OPjg4uL -C5cuXarxbUgnTpxArVYTGBjYlHne1i7nZrLro8mETI/k4IrZZByNpVU7XwbPWApAVWUl8euWkLx3 -CygKzgFd6TFuGmZWNro2kvf+zPENyyktyMXKwYm7Rz6HR/cBAJRfLubQl5+QcXQfJqZq7hz4KJ2G -j0dlYmrU/suKC/h9SQQXjx/A1sUdjYs7Fhp7vfz3Rc6gIC0JEzNzWrcPpMuTL2Lr4q6rc+XKFbp3 -705QUBArVqy42V0qhBBCiBZO/dcNVVVV5OXl4eTkVK2yoijs3r2bkSNHNkly4k/avGx+nfsGHQaN -oPcz71B++c/XrR79LpLMhCM8NGcNZhZWHPxyDoe//ZyeE94EIGXfNg5/M5f7p/0XR29/CtKTyU0+ -rYuPjZyBmbWG4Qu3UKEtYWfEC5haWHLXw/80av+xke9ham7JiMXbqdCWsPuTV/UmqUe/W4TGuS0h -4QsASDu4W28CDVBaWkpSUhLm5uaN23FCCCGE+FuqduNUbGws7du3x8HBoVrlpKQkbG1tadOmTZMk -J/50OTeTTqET8Ow9CLWlFdaOzrqyhC2r6Bo2BTNLa1Cp6BQ6kbSDu3XlJzd9TdcxL+Ho7Q+AfVtv -vPsNAaC8pIhzv/9Ct3+9hompGguNPUFPvMCZHeuN2n95cSGp+3fRc/wbmJqZY2nXCre7e+vFWrd2 -4dLJOC6ejKOqqhKPHvdjaddKr45GoyElJYU9e/Y0Wp8JIYQQ4u9L70xqcnIycXFxjBs3rsbKiYmJ -eHt7N0liQp/a0po77upebXtZYR7l2hJ+m/+23nYLWzvdz4UXUnHw8Kmx3eLMdCztWmFurdFts3Nt -R3FmulH7L8pMx9K+FeYau2pl13QOnYCFxp7D38ylICMFj2796Ro2RW+iDeDo6FhrG0IIIYS4vegm -qRkZGWzYsIEnn3wSjUZTY+XU1FRCQkKaLDlhmIWtA2aW1gx6ZxE2Tq411tE4u1GQnkIrzw7Vymza -uFJamEeFtkR3Cb7o0nls2rgZtX8re0fKigqorCjD1MyixjoqE1P8H3wC/wefoKy4gP1LPyR28QcE -v6n/1IiCggKsrKzkkr8QQgghrl7uT0tLY82aNYwcORIXF5daK+fl5dV4M5VoRioVfoMf5/clEZRf -LgagtCCX3OQEXRW/B0Zy+NvPKUhPBqA4K4PjP34JgIXGnnY9BhL31WcoVZWUXy7mj9UL8Q0ZbtTu -rVu70MqrA/Frl4CiUHQxleSYLXp1Dq/6nPy0pKv7s7HD3r09KIpenZKSEry8vBgwYEBDekEIIYQQ -txh1RUUFX3/9NSqVitWrV1NZWQmAm5sbY8aM0VWsrKxEq9VibW3dXLmKWnQJm8yx9V+w5Y0wUKkw -t9bQecQk3RpU3+DhKJWVRM9+mSulWiztW9Fp+ARdfJ/n3+Pgitmsf+4fmJia4jPgYe56+Cmj93/f -yx+zb8G7rJ0UgqOXP+0HPMTlnExdeZs7O3FwxWyKsy6gVFVh59aOXhOn67Vhbm6Op6cnvr6+N9gb -QgghhLgVqBTlL6e06qmoqKjO8oV2ta9VBJhmYPeG2jd0ZvfvHi+EEEIIcTuS16IKIYQQQogWRyap -QgghhBCixZFJqhBCCCGEaHGqvXFKtCyyplUIIYQQtyM5kyqEEEIIIVocmaQKIYQQQogWRyapQhhJ -UaqaOwUhhBDitqEGSE9PZ+fOnWRlZWFhYUFwcDABAQG6SpWVlWzZsoXk5GQURcHf35/BgwejUqma -LXFhnLKifFY/fR+9Jr2F3wOjANj7+Vtknj7K8AWbmzm7v4+8c//j4JefMPjdJc2dihBCCHFbMFEU -hZiYGIKDg3nllVd48MEHWb9+vd4NOwcPHqS4uJgXXniB5557jgsXLnDixIlmTFvUh4WtAyn7tgNQ -daWCrDPHmjmjv5/SwvzmTkEIIYS4rahVKhWjR4/WbfDx8cHFxYVLly7p7hzXarW0a9cOU1NTTE1N -8fHxMXjXuWg5zG3sKC3IpbQgl+zE49i39SI/7ayuvKqykvh1S0jeuwUUBeeArvQYNw0zKxsA8tOS -OPb9F+QknaS8pJC2XfrR65npmJpZAHA5N5N9kTMoSEvCxMyc1u0D6fLki9i6uAOwMrQzT3wZg4Wt -AwBHouZzpfQy3ce+rovf9dFkQqZHcnDFbDKOxtKqnS+DZyw1mN/FE4c4uXElV8q0FGddoMfY19m/ -7CPs3DwZ9PYio45v8+uj6f3sOxz/YRkXjh1A49yW/q/MxvYOD0oLctk+YyKlhXmUlxSx/rkhANi6 -eOjyA7hy5Qrdu3cnKCiIFStW3LR/SyGEEOJ2UW1NalVVFXl5eTg5Oem2de7cmbi4OP744w9KSkpI -TEwkMDCwSRMVDXel9DKevUJI3b+Tc7E7cAvqq1d+9LtILp08xENz1vDYvE2YW2s4/O3nuvKiC6l4 -9R3CsM/WM3zhz+SfT+J/29ddF78IjXNbQiO38tjnG/HuO0Q3ATSWNi+bX+e+QbseAwld+DP9JkcY -nV/G0Vh6jH8TJ99OHPthOQ99vIrsxOOUZF80Kh4gNnIGHR8bz2PzNmLl0Jpj3y8DwNLekWGfrafn -xHCcA7oQGrmV0MitehNUgNLSUpKSkjh58mS9jlsIIYQQNas2SY2NjaV9+/Y4ODjottnb2+Pq6srh -w4f59NNPadu2Lfb29k2aqGi4yooyvO8bSuqBXeSmnMbZ72698oQtq+gaNgUzS2tQqegUOpG0g7t1 -5R497sejW38qy8soOJ+Enaun3pIB69YuXDoZx8WTcVRVVeLR434s7VrVK8fLuZl0Cp2AZ+9BqC2t -sHZ0Njo/e3dvHDx8sHP1pG3XfljYtcLGyZWiS+eNigfo8uRkWrcPwMLWAa8+D1CQnlyv/DUaDSkp -KezZs6decUIIIYSomd7D/JOTk4mLi2PcuHF6lb799lt69uyJv78/ubm5bN68mdjYWHr37t2kyYqG -s3fzorQwj7Zd+sF1N7yVFeZRri3ht/lv69W3sLXT/Xw5N5MDyz6iQnuZ1ncGojIx5crlYl1559AJ -WGjsOfzNXAoyUvDo1p+uYVP0JpqGqC2tueOu7tW2G5PfNdffx3ftZ2PjTdR//ipYObSmsqLc6Nyv -cXR0rHeMEEIIIWqm+2bOyMhgw4YNPPnkk2g0Gl0FrVbLpUuX8Pf3B65+EQ8aNIhNmzbJJPVvpv8r -szHX2Osug8PVm6rMLK0Z9M4ibJxca4yL+fR1AoaG4dl7EABJuzeSun+XrlxlYor/g0/g/+ATlBUX -sH/ph8Qu/oDgN+cBYKI2o7QwT7cmtepKhdE5G5PfzYy/xtTMnLKium+eKigowMrKCnNz8wbvRwgh -hBBXmQCkpaWxZs0aRo4ciYuLi14FS0tLzM3NOX36NIqiUFVVRWJiolzu/xuyvaMdFpq//LupVPgN -fpzfl0RQ/v9nR0sLcslNTtBVKc66gMrk6sqQwgvnOL19rV4Th1d9Tn5aEgAWNnbYu7cHRdGV27l5 -krR7E5UVZZw/tIezMfV49JUR+d3U+P/n4OFDfmoiJdkXrrZRmKdXXlJSgpeXFwMGDKhXu0IIIYSo -mbqiooKvv/4alUrF6tWrqaysBMDNzY0xY8Zw7e7/7du3s337dhRFwc3NjaFDhzZz6qKxdAmbzLH1 -X7DljTBQqTC31tB5xCQcva+ePe854U3i1y/hSNR8HNr54jd4JKn7d+ri29zZiYMrZlOcdQGlqgo7 -t3b0mjhdV95j7Ovsi5xB0u6NePYeRNewKfWaJBrK72bHA2ic29I1bDJbpz+NqbklNk6uBL+1ABNT -UwDMzc3x9PTE19fX6DaFEEIIUTuVolx3yqsBDD2KaqFd9bWD15tmYPeG2r/2mCyJF0IIIYS4dchr -UYUQQgghRIsjk1QhhBBCCNHiyCRVCCGEEEK0OGrDVcTfmaxpFUIIIcTfkZxJFUIIIYQQLY5MUoUQ -QgghRIsjk1RRb/Hrl7L/i1n1jlOUqpuQjfH27t1LXFycwXoRERG8+OKL9W6/qqp5j08IIYS4lagB -0tPT2blzJ1lZWVhYWBAcHExAQICuUmFhIZs3byYrKwsrKyseeOABPD09my1p8feTd+5/HPzyEwa/ -u6TZcjh69CgODg7cc889jd52fHw8r776Kjt27Gj0toUQQojbkVpRFGJiYggODsbNzY2zZ88SFRXF -lClTdDfVfP/999x11108+eSTZGdn89VXXzFx4kS56UYYrbSw7vfe30xlZWW89dZbREVFUVlZyfbt -25k7dy6tWrVqtH1kZ2c3WltCCCGEAPW1155e4+Pjg4uLC5cuXcLW1pbS0lIuXLjAv/71LwCcnJzo -2rUrhw4d4v7772+uvEUTKisu4PclEVw8fgBbF3c0Lu5YaOx15flpSRz7/gtykk5SXlJI2y796PXM -dEzNLCgtyGX7jImUFuZRXlLE+ueGAGDr4sHgGUsBqKqsJH7dEpL3bgFFwTmgKz3GTcPMyka3jytX -rtC9e3eCgoJYsWJFvfJftmwZ+/fv58yZM5ibm7N8+XK0Wq1ukpqbm8vzzz9PdHQ07du3p3379jg6 -OuriT5w4waxZs4iLiyMvL48HH3yQyMhILKEwn0sAACAASURBVC0tyczMJCQkhKysLPLz8/H29gau -/h798ssvutxnzpxJVFQUiqLQr18//vvf/8ofeUIIIUQdqq1JraqqIi8vDycnJ922iooKysvLdf/v -7OxMVlZW02Qoml1s5HuYmKoZsXg7A9+cx+XcTL3yogupePUdwrDP1jN84c/kn0/if9vXAWBp78iw -z9bTc2I4zgFdCI3cSmjkVt0EFeDod5FcOnmIh+as4bF5mzC31nD428/19lFaWkpSUhInT55s0DGo -VCoURUGtVjNp0iTc3Nx0ZRMnTsTMzIzU1FQ2btxIenq6XmxiYiKjRo0iPj6es2fPcvLkSRYvXgxc -/V2Ij49n/vz59OvXj+TkZJKTk3UTVID33nuPmJgY4uLiOH36NPb29oSHhzfoOIQQQojbRbVJamxs -LO3bt8fBwQEAS0tLXF1d2b9/P2VlZSQlJbFz506Ki4ubPFnR9MqLC0ndv4ue49/A1MwcS7tWuN3d -W6+OR4/78ejWn8ryMgrOJ2Hn6knWmWNG7yNhyyq6hk3BzNIaVCo6hU4k7eBuvToajYaUlBT27NlT -72OYMGEC/v7+eHl5ER4eTkFBga4sLy+PDRs28Pnnn2NhYUGbNm0YNGiQXvwjjzzCww8/TGlpKSdP -nsTX15cDBw4Yvf958+bx4YcfotFoUKlUhIeHs3HjxnofhxBCCHE70XuYf3JyMnFxcYwbN06v0uOP -P050dDSrVq3C3d2de++9l8TExCZNVDSPosx0LO1bYa6xq7XO5dxMDiz7iArtZVrfGYjKxJQrl437 -I6asMI9ybQm/zX9bb7uFbfX9XX8Jvj7Mzc1ZsmQJL730Eh9//DF+fn5s27aNu+++m+TkZNq0aVPn -+tT09HQmT55McXEx3bp1Q61W601065KdnU1hYSFjx45tlGMRQgghbhe6SWpGRgYbNmzgySefRKPR -6FVycHDgscce0/3/tm3bcHFxabosRbOxsnekrKiAyooyTM0saqwT8+nrBAwNw7P31TOQSbs3krp/ -l14dUzNzyoqq3zxlYeuAmaU1g95ZhI2Ta525FBQUYGVlhbm5eYOOJTAwkJUrV/Laa6+xePFiFi5c -iLOzM7m5uZSWlmJpaVlj3OjRo5k8eTIjRowAYOXKlWzYsEGvjqWlJTk5OdViW7dujUajYdu2bbRr -165BeQshhBC3IxOAtLQ01qxZw8iRI2ucfKakpFBWVgbA2bNnOX78ON26dWvaTEWzsG7tQiuvDsSv -XQKKQtHFVJJjtujVKc66gMrk6sqRwgvnOL19bbV2HDx8yE9NpCT7AgClhXlXC1Qq/AY/zu9LIij/ -/7OvpQW55CYn6MWXlJTg5eXFgAED6n0MkydPZtGiRWRkZHD27FkOHDhAhw4dAHB3d6dz587MnDkT -RVFITExk1apVevHnzp3D1NQUgDNnzujWo14vMDCQ48ePk5qaCqBbs61SqXj22Wd5/vnndWdfMzMz -OXLkSL2PQwghhLidqMrLy5U5c+agUqkwNzensrISADc3N8aMGQPA/v37OXToEOXl5Tg6OvLggw/i -7OwMGH43/EK72i8TA0xTlDrLb/Td8xJ/Y/FwdeK5b8G7FF1Kw9HLH+fArlzOyaTnhDcBSDu4m/j1 -S7hSqsWhnS/uXe8ldf9O7p82V6+dEz9+ScLPUZiaW2Lj5ErwWwswMTWlqvIKx9Z/QfLen0Glwtxa -Q+cRk3C/5z5dbEVFBd27d+fuu+9m5cqVBnO+XlJSErNnz2bLli04ODgwefJkxo0bpzfxHD9+PElJ -SQQFBXHvvfeSnp7OvHnzANi4cSMRERGUlJTQsWNH/vGPf/DDDz/www8/6O3nk08+Yf78+VhZWdGu -XTt++ukn1Go1FRUVzJo1i6ioKFQqFfb29kyfPp2hQ4fW6ziEEEKI24lKUQzMEg2QSeqtHX8rWbBg -AQ4ODoSFhTV3KkIIIYQwQG24ihC3BldX12rrrYUQQgjRMskkVdw2hg8f3twpCCGEEMJI1Z6TKoQQ -QgghRHOTSaoQQgghhGhxZJIqhBBCCCFaHJmkCiGEEEKIFkcmqcJouSmn+W78QLITj9dZL379UvZ/ -MavR968oVXWWG8qvJPsC29+bxHfj72fjq4+T8ce+esU3t7179xIXF1dr+dGjR3F1deXgwYN1thMR -EcGLL77Y2OlRVVX3v4+h/FJTUxk0aBB33HEHQUFBbNu2rV7xQgghbi1quPrlEB0dTU5ODiqVip49 -e9KnTx9dpaqqKnbs2MHp06cxNTWlV69e3HPPPc2WtGge1q3a4Nk7BJvWTf9K3Lxz/+Pgl58w+N0l -tdYxlN+hlZ9i39aL4PB5oMBfHxHcnMdnjKNHj+Lg4FDr756rqyuhoaG4u7s3cWYQHx/Pq6++yo4d -O2qtYyi/qVOn4ufnx6ZNm1AUpdq/T3MenxBCiKanBkhOTiY4OBh3d3eys7NZvHgxbm5ueHl5AbBv -3z4KCwv597//TVlZGV9++SWOjo54e3s3Z+6iiVnaO9JzQniz7Lu0MN9gHUP55Z37H33//QGmZhYN -im8uZWVlvPXWW0RFRVFZWcn27duZO3curVq10qvn7OzM/PnzmyXH7Oxsg3UM5RcfH8+KFSuwtLRs -ULwQQohbixqgf//+ug1OTk54eHig1Wp12w4fPszo0aMxMTHBysqKPn36cPjwYZmk3ia2z5hI0aU0 -AEqyLzLs0/U4ePjoysuKC/h9SQQXjx/A1sUdjYs7Fhp7XXlVZSXx65aQvHcLKArOAV3pMW4aZlY2 -AGx+fTS9n32H4z8s48KxA2ic29L/ldnY3uFBaUEu22dMpLQwj/KSItY/NwQAWxcPBs9YalR+h776 -lLSDuym6lMbuOS9jojarV7yh/C/nZrLro8mETI/k4IrZZByNpVU7X137AFeuXKF79+4EBQWxYsWK -evX/smXL2L9/P2fOnMHc3Jzly5ej1Wp1k9SQkBCSkpIASEtL4+jRo9x11126+NzcXJ5//nmio6Np -37497du3x9HRUS+3mTNnEhUVhaIo9OvXj//+97+6t5F1796dxYsX89FHH7Fr1y68vb1ZvXo1Pj4+ -ZGZmEhISQlZWFvn5+boxwcfHh19++cWo/KZOncqmTZtISkoiNDQUc3PzesUbyj89PZ1HHnmEn3/+ -mZdffpkdO3bQqVMnXftCCCFaJt2aVEVRKC4u5uDBg2i1Wnx9fYGrl/oLCwtxcnLit99+IyEhAWdn -Z3Jzc5stadG0Bs9YSmjkVkIjt2Jp51itPDbyPUxM1YxYvJ2Bb87jcm6mXvnR7yK5dPIQD81Zw2Pz -NmFureHwt5//pY0ZdHxsPI/N24iVQ2uOfb8MuHp2c9hn6+k5MRzngC66PK6fABrKr9s/X+GxeRvR -tGlL8FsL6x1vTP7avGx+nfsG7XoMJHThz/SbHKFXXlpaSlJSEidPnqytm+ukUqlQFAW1Ws2kSZNw -c3PTlf3yyy8kJyeTnJxMmzZtqsVOnDgRMzMzUlNT2bhxI+np6Xrl7733HjExMcTFxXH69Gns7e0J -Dw+v1sYbb7zB6dOncXFxYdasq2uOnZ2diY+PZ/78+fTr10+Xx/UTQEP5zZkzh4SEBLy8vNiyZUu9 -443J/+LFi4SFhfHoo49y9uxZVq5cWVd3CyGEaAF0k9SEhAQiIyOJjo5m2LBhqNVXX0Z15coVTExM -UKlUpKSkcOHCBczMzCgrK2u2pEXLUV5cSOr+XfQc/wamZuZY2rXC7e7eenUStqyia9gUzCytQaWi -U+hE0g7u1qvT5cnJtG4fgIWtA159HqAgPbkJj6JuxuR/OTeTTqET8Ow9CLWlFdaOznrlGo2GlJQU -9uzZU+/9T5gwAX9/f7y8vAgPD6egoMDo2Ly8PDZs2MDnn3+OhYUFbdq0YdCgQXp15s2bx4cffohG -o0GlUhEeHs7GjRv16kRERNC1a1dat27NyJEjSUhIqPdx3CzG5J+enk54eDgjRozAxsaGtm3bNlO2 -QgghjKV7LWpAQAABAQHk5uaybt06+vTpQ8eOHTE3NweuTlbDwsKAqzdaXbuUJm5vRZnpWNq3wlxj -V2N5WWEe5doSfpv/tt52C1v9+ibqP9/Qa+XQmsqK8sZPtgGMzV9tac0dd3Wvs63rL7HXh7m5OUuW -LOGll17i448/xs/Pj23btnH33XcbjL129vGv61evyc7OprCwkLFjx9aZq5mZme5nFxeXFvNHqrH5 -azQaBgwY0ISZCSGEuFHqv25wdHQkKCiIU6dO0bFjR+DqJb309HQ8PT0BOH/+PM7Ozn8NFbchK3tH -yooKqKwoq/GGJAtbB8wsrRn0ziJsnFwbvB9TM3PKigzfPNXYGit/gIKCAqysrHR/+NVXYGAgK1eu -5LXXXmPx4sUsXLjQYMy1pTmlpaU13pDUunVrNBoN27Zto127dg3KC8DS0pKcnJwGxzdUY+UvhBCi -5THRarWsXbtW9wWTl5fHiRMn9C6HdevWjT179lBZWalbt9q1a9fmylm0INatXWjl1YH4tUtAUSi6 -mEpyzJY/K6hU+A1+nN+XRFB+uRiA0oJccpPrd7nYwcOH/NRESrIvXG2jMK/RjqFOjZR/SUkJXl5e -DTqbN3nyZBYtWkRGRgZnz57lwIEDdOjQwahYd3d3OnfuzMyZM1EUhcTERFatWqUrV6lUPPvsszz/ -/PO6ZQSZmZkcOXKkXjkGBgZy/PhxUlNTAcjKyqpXfEM1Vv5CCCFaHrWVlRV+fn78+OOP5OfnoygK -QUFB9OrVS1cpKCiI/Px8IiMjMTExISQkBBeXlvksSdH07nv5Y/YteJe1k0Jw9PKn/YCHuJzz581T -XcImc2z9F2x5IwxUKsytNXQeMQlHb3+j96FxbkvXsMlsnf40puaW2Di5EvzWAkxMTW/GIelpjPzN -zc3x9PTU3ZBYH1OmTGH27NlERETg4ODA5MmTGTdunNHxUVFRjB8/Hnd3d4KCgnjqqaf0bp6KiIhg -1qxZ9OrVC5VKhb29PdOnT6dLly5G78Pb25sPP/yQ++67DysrK9q1a8dPP/2kW9t+MzVG/kIIIVoe -lfLXJ2bXU1FRUZ3lC+1qXqt4zTQDuzfUvqG1sRJ/Y/Gi5ViwYAEODg66teFCCCHErezmn+YQQjQK -V1dXNBpNc6chhBBCNAmZpArxNzF8+PDmTkEIIYRoMiaGqwghhBBCCNG0ZJIqhBBCCCFaHJmkCiGE -EEKIFkcmqUIIIYQQosWRSapoMXJTTvPd+IFkJx6/Ke0rStVNafeavXv3EhcXd1P3UZejR4/i6urK -wYMHb0r7VVU3t/+EEEKI65kApKamsnLlSj799FM+++wz9u3bp1eppKSEXbt2sXDhQr755ptmSVTc -+qxbtcGzdwg2rRv/RRF55/7HjvefbfR2r3f06FESEqq/ieqxxx7DyckJLy8vPD09GTx4MMePN/5E -3NXVldDQUNzd3Ru97fj4eB544IFGb1cIIYSojRogOTmZ4OBg3N3dyc7OZvHixbi5ueHl5QWAiYkJ -bm5ulJeXk52d3Zz5iluYpb0jPSeE35S2Swvzb0q7AGVlZbz11ltERUVRWVnJ9u3bmTt3Lq1atdLV -+fjjjxk/fjyKorBw4UJGjx7NsWPHGjUPZ2dn5s+f36htXiO/90IIIZqaCUD//v11Z1+cnJzw8PBA -q9XqKllZWeHv74+bm1vzZCma1ebXR3M25id+futfrBk3gF2zXqSsME9Xfjk3k82vP0FpYR6//vdN -1owbwPYZE3Xl5ZeL2bdwBuueGcz3z/+D+HVLUKoqdeXbZ0xk/XNDWP/cEL56PIj8tCS9/VdVVvLH -mkh+ePFhfvj3Q/y24B0qtCV6dZL3/sym1x5n7cRgNk8dRdrB3QCUFuSy8eVQfp37Bpmnjuj2c31+ -AFeuXKFLly6MHTu23v2zbNky9u/fz5kzZzh//jx9+/bV+/25nkqlIjQ0lISEBN3l8/T0dLp160ZW -VhZjxozBxcWFkJAQXUxBQQETJkygXbt2+Pj4MHPmTCor/+y/kJAQvL298fb2Rq1Wc+LEiWrHNmPG -DPz8/OjQoQPjxo2r9iayqKgounTpQtu2bbnnnnvYuHEjAJmZmXTu3JmwsDD27t2r28/1+QkhhBA3 -g+5h/oqiUFJSwqlTp9BqtQ16x7i4dSXt3siA1z7BwtaBmM+mcejrz+j7wvu6cm1eNr/OfYMOg0bQ -+5l3KL/85yQoNnIGZtYahi/cQoW2hJ0RL2BqYcldD/8TgMEzlurqfjd+YLV9H/0uksyEIzw0Zw1m -FlYc/HIOh7/9nJ4T3gQgZd82Dn8zl/un/RdHb38K0pPJTT4NXD07O+yz9Zz7/RdOb/uOwe8uqfH4 -SktLSUpKwtzcvEH9o1KpUBQFtVrNpEmTaq1XVVXF8uXL6dGjByYmfy4Jv3jxImFhYUyaNInFixeT -n//nmd+JEydib29PUlISRUVFDB06FGtra1555RUAfvnlF11dV1fXavt87733+O2334iLi8PGxoZX -XnmF8PBw5s2bB8B3333Hm2++yYYNGwgKCiIhIYE//vgDuHp2Nj4+nvXr17No0SJ27NjRoP4RQggh -6kv3LZmQkEBkZCTR0dEMGzYMtVpeRiX+1PGxcVi1aoOJ2gyf+x8h/fBevfLLuZl0Cp2AZ+9BqC2t -sHZ0BqC8pIhzv/9Ct3+9hompGguNPUFPvMCZHeuN3nfCllV0DZuCmaU1qFR0Cp2oO1MKcHLT13Qd -8xKO3v4A2Lf1xrvfkHodn0ajISUlhT179tQrDmDChAn4+/vj5eVFeHg4BQUF1epMmzYNLy8vvL29 -OXToEKtWrdIrT09PJzw8nBEjRmBjY0Pbtm0ByM/P5/vvv+eTTz7BzMwMR0dH3n//fZYuXVptH7WZ -N28eH374IRqNBpVKRXh4uO5MKcBnn33GrFmzCAoKAsDf358nnnii3v0ghBBCNCbdTDQgIICAgABy -c3NZt24dffr0oWPHjs2Zm2ihHDx8KCvWn4ipLa25467u1eoWZ6ZjadcKc+s/3zlv59qO4sx0o/ZV -VphHubaE3+a/rbfdwtZO93PhhVQcPHzqcwg1cnR0bFCcubk5S5Ys4aWXXuLjjz/Gz8+Pbdu2cffd -d+vqXFuTWhuNRsOAAQOqbU9OTsbJyQl7e3vdtjvvvJPk5GSjcsvOzqawsLDaMobrj/XMmTPcdddd -RrUnhBBCNJVqp0sdHR0JCgri1KlTMkkVNSq6kIrGua1RdW3auFJamEeFtgQzK5ur8ZfOY9PGuPXN -FrYOmFlaM+idRdg4Vb+UDaBxdqMgPYVWnh1qbcfUzJyyorpvniooKMDKyqrBl/wDAwNZuXIlr732 -GosXL2bhwoUNaud6np6eZGdnU1RUhK2tLQBnz57V3dRoSOvWrdFoNGzbto127drVWMfLy4vTp0/T -uXPnWtuxtLQkJyen3vkLIYQQDWWi1WpZu3at7gsoLy+PEydO6C43CgGQsm87lRVllF8u5uh3i/AN -fsyoOAuNPe16DCTuq89Qqiopv1zMH6sX4hsy3Lgdq1T4DX6c35dEUH65GLh6M1Ru8p+PevJ7YCSH -v/2cgvSrZxeLszI4/uOXes04ePiQn5pISfaFq21cd+MXXH3MmpeXV41nMw2ZPHkyixYtIiMjg7Nn -z3LgwAE6dKh9wlwfjo6OPPLII7z++utUVlZSUFDAu+++W+dZ2eupVCqeffZZnn/+ed0yhMzMTI4c -OaKr89xzzxEeHq57fNa5c+eYM2eOXjuBgYEcP36c1NRUALKyshrj8IQQQohaqa2srPDz8+PHH38k -Pz8fRVEICgqiV69eukrr1q3j/PnzlJeXU15ezty5c7Gzs2PcuHHNmLpoSmoLS356/UnKivPxvnco -gQ8/ZXRsn+ff4+CK2ax/7h+YmJriM+Bh7qpHfJewyRxb/wVb3ggDlQpzaw2dR0zSrUH1DR6OUllJ -9OyXuVKqxdK+FZ2GT9BrQ+Pclq5hk9k6/WlMzS2xcXIl+K0FmJiaAlcv2Xt6ejbohsEpU6Ywe/Zs -IiIicHBwYPLkyY36u7Fs2TJefvll2rdvj1qt5p///KfupiljREREMGvWLHr16oVKpcLe3p7p06fT -pUsXAMaPH8+VK1cYPnw4JSUltGnThjfffFOvDW9vbz788EPuu+8+rKysaNeuHT/99JOsXRdCCHHT -qBRFUW6kgb8+yuavFtrZ1Vk+zcDuDbV/7RKoxN+ceLj6CKp7nnoZ1049DNa9EVWVlUQ91ZtH5v5g -9HKClmTBggU4ODgQFhbWLPu/cuUK9vb2HD9+HG9v72bJQQghhGgs8lpUYaQb+lumTsWZGQBcPH4A -tYUV1jfhjVNNwdXVlTZt2jT5flNSUgCIjo7GxsbmprxxSgghhGhqcq1ONKvLOZf49fM30eZmYWph -yb1TZmFi+vf8WA4fbuQ620Z0/vx5nnrqKTIyMrC2tubrr7/GzMysyfMQQgghGptc7pf4OsuFEEII -IZrD3/OU1d/IjU4CmzteCCGEEKI5yJpUIYQQQgjR4sgkVQghhBBCtDgySRVCCCGEEC2OGiA1NZXo -6GhycnJQqVT07NmTPn366Cqlp6ezc+dOsrKysLCwIDg4mICAgGZLWgghhBBC3NrUAMnJyQQHB+Pu -7k52djaLFy/Gzc0NLy8vFEUhJiaG4OBg3NzcOHv2LFFRUUyZMkVuyhFCCCGEEDeFGqB///66DU5O -Tnh4eKDVaoGr7/4ePXq0rtzHxwcXFxcuXbokk1QhhBBCCHFT6B5BpSgKJSUlnDp1Cq1WW+s7zKuq -qsjLy8PJyanJkhRCCCGEELcX3SQ1ISGBzZs3oygKTz31FGp1zY9QjY2NpX379jg4ODRZkkIIIYQQ -4vaim4kGBAQQEBBAbm4u69ato0+fPnTs2FGvcnJyMnFxcYwbN67JExVCCCGEELePao+gcnR0JCgo -iFOnTultz8jIYMOGDYwaNQqNRtNkCQohhBBCiNuPiVarZe3ateTk5ACQl5fHiRMnaNu2ra5SWloa -a9asYeTIkbi4uDRXrkIIIYQQ4jahtrKyws/Pjx9//JH8/HwURSEoKIhevXoBUFFRwddff41KpWL1 -6tVUVlYC4ObmxpgxY5ozdyGEEEIIcYtSKYqi3EgDRUVFdZYvtLOrs3yagd0bat/QY7CaO14IIYQQ -QtSfvBZVCCGEEEK0ODJJFUIIIYQQLY5MUoUQQgghRIsjk1QhhBBCCNHiyCRVCCGEEEK0ODJJFUII -IYQQLY5MUoUQQgghRIujBkhNTSU6OpqcnBxUKhU9e/akT58+ukqGyoUQQgghhGhMaoDk5GSCg4Nx -d3cnOzubxYsX4+bmhpeXF8aUCyGEEEII0ZjUAP3799dtcHJywsPDA61Wq9tmqFwIIYQQQojGpL72 -g6IolJSUcOrUKbRaLb6+vnoVDZULIYQQQgjRWHST1ISEBDZv3oyiKDz11FOo1Wq9iobKhRBCCCGE -aCy6mWZAQAABAQHk5uaybt06+vTpQ8eOHTG2XAghhBBCiMZS7RFUjo6OBAUFcerUqRoDDJULIYQQ -Qghxo0y0Wi1r164lJycHgLy8PE6cOEHbtm0BMFQuhBBCCCFEY1NbWVnh5+fHjz/+SH5+PoqiEBQU -RK9evQAwVC6EEEIIIURjUymKotxIA0VFRXWWL7Szq7N8moHdG2rf1ta2RccLIYQQQoj6k9eiCiGE -EEKIFkcmqUIIIYQQosWRSaoQQgghhGhx5In8N5msaRVCCCGEqD85kyqEEEIIIVocmaQKIYQQQogW -Ryapt4HNr4/mwrH9BuspSlUTZCOEEEIIYZgaIDU1lejoaHJyclCpVPTs2ZM+ffrUGBAVFUVRURGT -Jk1q0kTFzZV37n8c/PITBr+7pLlTEUIIIYS4OklNTk4mODgYd3d3srOzWbx4MW5ubnh5eelVPnr0 -KBUVFc2Rp7jJSgvzmzsFIYQQQggdNUD//v11G5ycnPDw8ECr1epVLCws5Ndff+XBBx9k586dTZvl -be5ybib7ImdQkJaEiZk5rdsH0uXJF7F1cQdgZWhnnvgyBgtbBwCORM3nSulluo99XddGztlT/LFm -IYUZ52jToTN9n38PC7tWlBbksn3GREoL8ygvKWL9c0MAsHXxYPCMpbr97/poMiHTIzm4YjYZR2Np -1c5XV15VWUn8uiUk790CioJzQFd6jJuGmZWNUeUAV65coXv37gQFBbFixYqb36lCCCGEaNF0j6BS -FIWSkhJOnTqFVqvF19dXr+KmTZsYOHAgFhYWTZ7k7e7od4vQOLclJHwBAGkHd+tN8Ixx4WgsA179 -BAtbB2I+m8ahr+fS94X3sLR3ZNhn6zn3+y+c3vZdrZf7tXnZ/Dr3DToMGkHvZ96h/PKfj9Y6+l0k -mQlHeGjOGswsrDj45RwOf/s5PSe8aVQ5QGlpKUlJSZibm9e3e4QQQghxC9LdOJWQkEBkZCTR0dEM -GzYMtfrPR6geOXIEMzMzAgMDmyXJ2511axcunYzj4sk4qqoq8ehxP5Z2rerVRsfHxmHVqg0majN8 -7n+E9MO/1iv+cm4mnUIn4Nl7EGpLK6wdnXVlCVtW0TVsCmaW1qBS0Sl0ImkHdxtdDqDRaEhJSWHP -nj31yksIIYQQtybdTDQgIICAgAByc3NZt24dffr0oWPHjhQUFBATE8P48eObM8/bWufQCVho7Dn8 -zVwKMlLw6NafrmFT9CaK9fF/7N17XFRl/sDxz8AwMDBcRIHlDpoieAlNwduqeUt/pW5qlpm7pWJl -G9Zuq6VWtkUXa81VEy+luW1SqeWtFNJMNE1JDRWFFEFUTOQ2A8MM1/n94Xa2WZCbCKTf9+s1r5c8 -z/d5nu+Z7bV8Oec557j5d6C0WN+gMWoHR37XpXe19lJDAWUmI98te9Gq3d7ZpV79v+bu7t6gnIQQ -Qghx66r2xil3d3fCw8M5ffo0Xbt2QavyWQAAIABJREFUJS0tDZVKxZo1a4BreweNRiNLliwhKiqq -2RO+HalsbOk86iE6j3qI0mI9h1a/zsGVrzL0haUA2KjtMBsKlD2pVRW139xW9PMFZT/rL2ztNJQW -NfzmKXtnN+wcHBn+0gqc2nk3uP/X9Ho9Wq1WLvkLIYQQAhuTycSGDRvIy8sDoKCggJSUFHx9fQGI -iIggOjpa+UycOBEvLy+io6PRarUtmftt4+j6JRReSAfA3skFV7/2YLEo/S4+gaR/u43K8lIu/rCX -c4nbq81x/uDXVJaXUl5STPJnK7hjyB+s+t38O1CYdRZj7mUAzIaC+iWnUhEy4gG+XxVDWUnxtbH6 -fPIzUuvX/x9Go5GgoCAGDx5cv3WFEEIIcUtTa7VaQkJC2LJlC4WFhVgsFsLDw+nTp09L5yb+w+OO -biStXUjx1ctYqqpw8QmgT9R8pT/isdkciF1A+rdbCew7nJ6TZ1UrAnVefnw5ZzKlRQUED/g/wkZP -se739KXn5Gh2zn8UW40DTu28GTrvPWxsbevMr8fkaE5sep+vnp8MKhUaRx3dJ8zAPbhzvfoBNBoN -gYGB1W7YE0IIIcTtSWWx/OqUXCMUFRXV2r/cpfrew1+bU8fydc3v7Ox8S48XQgghhLgdyWtRhRBC -CCFEqyNFqhBCCCGEaHWkSBVCCCGEEK1OtUdQidZF9rQKIYQQ4nYkZ1KFEEIIIUSrI0WqEEIIIYRo -daRIFUIIIYQQrY4aICsriz179pCXl4dKpSIyMpJ+/fopQcnJyWzduhU7OzulbfTo0XTp0qX5MxZC -CCGEELc8NUBGRgZDhw7Fz8+P3NxcVq5ciY+PD0FBQQCYzWZ69erFqFGjWjJXIYQQQghxm1ADDBo0 -SGlo164d/v7+mEwmpc1kMuHk5NT82QkhhBBCiNuS8ggqi8WC0Wjk9OnTmEwmq3eom81mcnNziYuL -o6qqitDQUHr27NkiCQshhBBCiFufUqSmpqayfft2LBYLU6ZMQa3+7yNUu3TpgslkIigoiLy8PDZs -2IBKpaJHjx4tkrQQQgghhLi1KZVoaGgooaGh5Ofns3HjRvr160fXrl0B8Pf3VwZ4e3vTv39/UlNT -pUgVQgghhBA3RbVHULm7uxMeHs7p06evO0ilUmFjI0+vEkIIIYQQN4eNyWRiw4YN5OXlAVBQUEBK -Sgq+vr4AGI1GNm7cSEFBAQCFhYV89913hIaGtljSQgghhBDi1qbWarWEhISwZcsWCgsLsVgshIeH -06dPHwCcnJy44447+PzzzykqKsLGxobIyEi6d+/ewqkLIYQQQohblRqge/futRad4eHhhIeHN1tS -QgghhBDi9iYbS4UQQgghRKsjRaoQQgghhGh1pEgVQgghhBCtjhSpQgghhBCi1ZEiVQghhBBCtDpS -pAohhBBCiFZHitTb0PFNqzn0/hsNHmexVN3QuvmZaXw2bQi5Z08qbRWlZjY9OZJNT47kowfv4vKJ -Qze0hhBCCCFuDWqArKws9uzZQ15eHiqVisjISPr162cVePbsWXbv3k1RURGurq4MGTKEDh06tEjS -ovkVnP+JpA/fYcTLq6r1Zf94gF0xM9HoXJQ2O3st41fEW8U5tvEgsO8wnNp6KW1qewfGx+4EYPvs -STcpeyGEEEL81qgBMjIyGDp0KH5+fuTm5rJy5Up8fHwICgoCIDs7my+//JKHHnoILy8v8vLyKC0t -bcm8RTMzGwpr7W8T2JHR72yoNcbB1Z3I6XObMi0hhBBC3KLUAIMGDVIa2rVrh7+/PyaTSWlLTExk -yJAheHldOwPWtm3bZk5T3IjSYj3fr4rh55OHcfbyQ+flh73OVekvvJDOic/fJy/9FGVGA749BtDn -8fnY2tlj1ueTsCAKs6GAMmMRm54cCYCzlz8jFqyu1/oJC6IounIBAGPuz4xZtAk3//qfha+qrOT4 -xlVk7P8KLBY8Q3sSMXUOdlonJaaiooLevXsTHh7O2rVr6z23EEIIIVon9S//sFgsGI1GTp8+jclk -omPHjkrQlStX6N+/P19++SVXr17F39+f3//+92g0mhZJWjTMwdhXsNU4MGFlAuUmI9++81erIrXo -chZB/UfS/8+vUlVRQfzLU/kpYSOh907GwdWdMe9u4vz3u0iL/6zGy/11+XUx+9m0IQ0en/xZLDmp -x7jv7U+xs9eS9OHbHP14CZHTX1BizGYz6enp8t+kEEIIcYtQitTU1FS2b9+OxWJhypQpqNVKF0VF -RXzzzTeMGDECNzc3tm3bxu7duxk1alSLJC3qr6zYQNahb3jow0Rs7TTY2mnwubMvpoJcJcY/4m4A -yk1GDNmZuHgHcvXMCUIbsE7B+TN88thA5ef+T72Kf69BtYyov9Sv1jPsxRXYOTgC0G18FNv/9pBV -karT6cjMzMTR0bFJ1hRCCCFEy1Iq0dDQUEJDQ8nPz2fjxo3069ePrl27AuDk5MTYsWNxc3MDIDIy -kq1bt7ZMxqJBinIu4eDaxuqmpv9Vkp/D4Q/epNxUQts7wlDZ2FJRUtygdeqzJ7UxSg0FlJmMfLfs -Rat2e+fqx+Pu7t7k6wshhBCiZaj/t8Hd3Z3w8HBOnz6tFKkeHh7k5uYqRapOp2veLEWjaV3dKS3S -U1leiq2dfY0xiYtmE3rvZAL7Dgcg/dutZB36xirG1k5DaVHtN0/dKJWNCktlpVWbvbMbdg6ODH9p -BU7tvGsdr9fr0Wq1cslfCCGEuAXYmEwmNmzYQF5eHgAFBQWkpKTg6+urBEVGRrJnzx7MZjMWi4UD -Bw7QqVOnlspZNIBjWy/aBHXi+IZVYLFQ9HMWGYlfWcUUX72MyubaI3MNl8+TllD9jKibfwcKs85i -zL0MgNlQ0OS56jx8uHh0H1gslBbrrzWqVISMeIDvV8VQ9p+zu2Z9PvkZqVZjjUYjQUFBDB48uMnz -EkIIIUTzU2u1WkJCQtiyZQuFhYVYLBbCw8Pp06ePEtSxY0cMBgNr1qyhsrKSoKAghgxp+A0womUM -fPYtDrz3MhtmDMM9qDPtB99HSV6O0h85/QWOb1rFsbhluAV0JGTERLIO7baaQ+fpS8/J0eyc/yi2 -Ggec2nkzdN572NjaNlme3SfMYO+i2Wx4fAReYXcx8Jk3AegxOZoTm97nq+cng0qFxlFH9wkzcA/u -rIzVaDQEBgZa3fAnhBBCiN8ulcVisdzIBEVFRbX2L3e5/l5IgDl1LF/X/M7OzjJeCCGEEOIWI69F -FUIIIYQQrY4UqUIIIYQQotWRIlUIIYQQQrQ61R5BJW4tsqdVCCGEEL9FciZVCCGEEEK0OlKkCiGE -EEKIVkeKVFFvFktVS6dwUyUnJ+Pt7U1SUlKTzVlSUkJwcDDBwcHY29uze/fuugc1Uk35N+f6Qggh -RFNSA2RlZbFnzx7y8vJQqVRERkbSr18/4NqbfJYuXWo1qLKyEp1Ox6xZs5o/Y9EiCs7/RNKH7zDi -5VUtnUqDmc1m/vKXv/D555+jUqkYOHAg77zzDv7+/lZx3t7ejB8/Hj8/vyZb29HRkYyMDAB69+7d -qDni4+O59957adOmjdLm5OREZmamVVxN+TfF+kIIIURLUANkZGQwdOhQ/Pz8yM3NZeXKlfj4+BAU -FISTkxPPP/+81aBPP/2Ubt26tUjComWYDYUtnUKjxcTEcOrUKY4cOYKLiwufffYZSUlJ1YpUT09P -li1b1kJZ1q5bt24cO3as1pjWnL8QQgjRUDYAgwYNUs6+tGvXDn9/f0wmU40DUlJSUKvVhIWFNV+W -osWY9flsfXY8+xY/T87pY2x6ciSbnhxJwoIoAAovpLPx8RFWWwHKjEV8OnUwleWlAGyfPYlziV+y -Y96f+HTqYL5542lKDQVKfFVlJT9+GssXT4/miz/fx3fvvUS5yWiVR0VFBT169OCxxx5r8DGcOnWK -iIgIfH19cXZ2Ztq0aYwbN07pHzZsmHJJXK1Wk5KSovTt3buXMWPGMHToUO644w62b99O+/btGTly -pBLTu3dvPv74YwYMGICXlxdjxowhNze33vlVVFSwYMECQkJC6NSpE1OnTq3zqQy/Vlv+zbG+EEII -cTMoe1ItFgvFxcUkJSVhMplqfAe6xWLh22+/ZeDAgc2apGg5Dq7ujHl3E5FRc/EM7cH42J2Mj93J -iAWrAXDz74DOy49Lx75Txpw/tAv/XoOxtbNX2tK/3crg597hgVVfY6O244eP3lX6kj+L5cqpH7jv -7U+5f+k2NI46jn68xCoPs9lMeno6p06davAx/PGPfyQ2NpYXX3yxxuJx165dZGRkkJGRgYeHR7X+ -hIQElixZQmRkJG+++SaHDx/m8OHDXLhwQYlZt24dGzZs4MKFC2g0GmbPnl3v/F555RUSExM5cuQI -aWlpuLq6Mnfu3HqPryv/m72+EEIIcTMoRWpqaiqxsbHs2bOHMWPGoFZXf4Rqeno6zs7OjfpFKG5d -nUc+xJmvNyk/ZyR+RftB91nFdL1/Kto2Htio7ehw91guHd2v9KV+tZ6ek2dh5+AIKhXdxkdxIelb -q/E6nY7MzEz27t3b4PzGjh3L/v37SUpKIjAwkHnz5mE2m+s9PjQ0lC5dutCxY0dGjRpFu3btCAgI -4Ny5c0rMnDlz8Pb2RqPR8Kc//YkdO3bUe/6lS5fy+uuvo9PpUKlUzJ07l61bt1rFnDhxAg8PD+Wz -bdu2es/fFOsLIYQQzU2pRENDQwkNDSU/P5+NGzfSr18/unbtahV89uxZgoODmz1J0boFRA7hh3X/ -wFRwFVQqiq5c5Hdhd1033s2/A6XFegBKDQWUmYx8t+xFqxh7Z5dq49zd3Rud45133snOnTs5duwY -M2bMIC0tjY0bNzZoDpVKVeO//1eXLl3Iz8+v15y5ubkYDIZq2xj+91jrsye1Meq7vhBCCNHcqp0u -dXd3Jzw8nNOnT1crUrOyshg2bFizJSdaD1s7DaVFNd88ZWOr5o4hfyD9222oHbQE/34U1FLEFV3O -QufpC4C9sxt2Do4Mf2kFTu28a81Br9ej1WrRaDSNPo4ePXqwcOFCJk6c2Og56nK9P+ZsbGyoqKiw -amvbti06nY74+HgCAgJuWk6tYX0hhBCiIWxMJhMbNmwgLy8PgIKCAlJSUvD19a0WXFBQIK/RvE25 -+XegMOssxtzLAJh/deMTQKfhE0jfu43MAwl0GDS62vjMAwlUlpdSVlJM8mcr6Dj0/msdKhUhIx7g -+1UxlJUUX5tbn09+RqrVeKPRSFBQEIMHD25Q3hUVFfTv35+PPvoIg8HA1atX+fjjj5VHrDWVDRs2 -YDab0ev1vPLKK0ydOrVaTGBgIDt27MBisShnWlUqFU888QQzZ85Er792djknJ+emnDVt6fWFEEKI -hrDRarWEhISwZcsWFi1axJo1awgICKBPnz5WgZWVlZhMJhwdHVsoVdGSdJ6+9Jwczc75j7I5eiz7 -Fr9AVWWl0u/o7oGrX3sqSs24+lY/i6i2d+DL2Q+zZdZYPDqHEzZ6itLXY3I07e7oylfPT2bzrD/w -zZvRlOTnWI3XaDQEBgbWeENfbdRqNcuWLePTTz8lJCSELl26YDKZWL16dQO/gdo5OjoSERFBWFgY -/fr149lnn60WM3/+fBISEggICODpp59W2mNiYoiIiKBPnz6EhYUxduxYsrOzmzS/1rC+EEII0RAq -i8ViuZEJ6npUzXKX6nsLf21OHcvXNX9dZ3Zl/I2Nb4jvV76GW8AddB71kFX79tmTuGvKs3h3i2iy -tVqT3r1789ZbbzFkyJCWTkUIIYS4ZchrUUWT+DkliZ9Tkug0fPx1Im7ob6FW7wb/1hNCCCHE/6j+ -nCkhGqCi1Mzm6DHYaZ3o/9TfsVHbtXRKQgghhLgFSJEqboja3oEJKxNqjblvYVwzZdMykpKSWjoF -IYQQ4pYjl/uFEEIIIUSrI0WqEEIIIYRodaRIFUIIIYQQrY4UqaLZWCxVjRq3ffYkLp841MTZNE55 -eTmzZ8+mpKSkyeZMTU1l0aJF1+0/evQoV69ebbL1YmJirJ6TWl9VVbX/77d//36OHDnS2LSEEEII -KzZw7XWn69atY9GiRbz77rscOHDAKqiyspJt27axZMkS/vnPfxIfHy+P3BENUnD+J77++xMtnUat -+vXrx1//+tdaYx555BHatm3bpC+1uOOOOzh48CDvvvtujf0HDx7kH//4R5Ot1xjHjx/nnnvuqTUm -OTmZ1NTUWmOEEEKI+lIDZGRkMHToUPz8/MjNzWXlypX4+PgQFBQEXLt7ubi4mKeeeorKykrWr19P -SkoKXbt2bcncxW+I2VDY0inUKiUlBQ8PD7755hvKysrQaDTVYj755BPMZjNz5sxp0rXVajXr1q3j -rrvuYtSoUXTu3Nmq/+GHH+auu+4iJiYGW1vbJl27vnJzc6/bV1payrx584iLi6OyspKEhAQWL15M -mzZtmjFDIYQQtxo1wKBBg5SGdu3a4e/vj8lkUtpMJhMBAQHY2tpia2tLhw4d6nyTkbg1/JzyA6e2 -rqOi1ETx1ctEPDabQx+8iYtPIMNfXAFA4YV0Tnz+PnnppygzGvDtMYA+j8/H1s4esz6fhAVRmA0F -lBmL2PTkSACcvfwZseC/rybN2L+Dk5vXYNbno3Vrx50Tn8S/92Clv7ykmL3/eI7LJw6j8/Rl0F8W -4vw7f6W/oqKC3r17Ex4eztq1axt8nKtXr+bRRx8lKSmJL774ggcffLBazD/+8Q/WrVvX4Ll/sWjR -Ivr27Uvfvn2r9Tk6OvK3v/2NZcuWsWzZMqu+Nm3a0Lt3bxISEhg1alSD183Pz2fmzJns2bOH9u3b -0759e9zd3ZX+lJQU3njjDY4cOUJBQQGjRo0iNjYWBwcHcnJyGDZsGFevXqWwsJDg4GuvvO3QoQO7 -du0C4IMPPuDQoUOcOXMGjUbDmjVrMJlMUqQKIYS4IcqeVIvFQnFxMUlJSZhMJqt3pHfv3p0jR47w -448/YjQaOXv2LGFhYS2SsGh+2ckHiZj2Au06duPEF2u476315J49iTH3ZwCKLmcR1H8kY97dxLjl -Oyi8mM5PCRsBcHB1Z8y7m4iMmotnaA/Gx+5kfOxOqwI180A8R/+9mP5PvcoDq3fz+2fepKLUbJXD -j5/G0vX+ady/dCtat7ac+PwDq36z2Ux6ejqnTp1q8PGVlpayY8cO7r33Xv74xz+yevXqajHZ2dkY -DIZG/XefnZ0NgNFopKioiKqqKq5cuVIt7g9/+AObN2+ucY5HH320UcU3QFRUFHZ2dmRlZbF161Yu -Xbpk1X/27FkefPBBjh8/zrlz5zh16hQrV64EwNPTk+PHj7Ns2TIGDBhARkYGGRkZSoH6C5VKhcVi -Qa1WM2PGDHx8fBqVqxBCCPEL5WH+qampbN++HYvFwpQpU1Cr//ucf1dXV7y9vTl69Cjbtm0jMjIS -V1fXFklYND9Xv2Dc/Dvg4h2Im38H7F3a4NTOm6IrF3Fq9zv8I+4GoNxkxJCdiYt3IFfPnCC0nvOf -2vYRPR95Bvfga5e5XX2DcfUNtoq5a8qztG1/bcagfvfw09cbrfp1Oh2ZmZmN2iu6adMmRo4ciUaj -oXPnzhQXF5Oenk6HDh2UmMzMTKufG2Lt2rVs374ds9nM7t27+fvf/84zzzzDhAkTrOLc3d0pKSmp -cbvBiBEjeOqpp8jPz7c6C1qXgoICNm/eTG5uLvb29nh4eDB8+HB+/vlnJWbs2LEAFBUVkZaWRseO -HTl8+HC915g+fTo//vgjQUFBREVFMWfOHPn/ByGEEDdMqURDQ0MJDQ0lPz+fjRs30q9fP2XP6ccf -f0xkZCSdO3cmPz+f7du3c/DgwRovW4pbl0pV879L8nM4/MGblJtKaHtHGCobWypKius9r+FyFm7+ -tReANr/6o0nr1pbK8rJqMQ0p3n5t4sSJVpf39+/fj42N9YMvysrKsLNr3Ctf582bx6OPPkrPnj0p -Ly8nOTn5untL1Wp1jUWqra0tDz74IHFxcTz11FP1XjsjIwMPD49aL71funSJ6OhoiouL6dWrF2q1 -Gr1eX+81NBoNq1at4plnnuGtt94iJCSE+Ph47rzzznrPIYQQQvyvao+gcnd3Jzw8nNOnTwPX9qNe -uXJFuZnD3d2d4cOHc+LEiebNVLRaiYtmEzxgFMNfWkHPh6Px7hZRLcbWTkNpUc03T+k8fdBfyrzh -PPR6PWVl1YvXuqjVaquiUa1WVytS/fz8uHDhQqPXnz9/PqtXr2bs2LF88MEHNcaYzWaqqqrQ6XQ1 -9td1yb+m9T09PcnPz8dsNl9nFEyaNIlJkyYRHx9PTEwMd999d7UYBwcH8vLyrjsHQFhYGOvWreOR -Rx5RtgsIIYQQjWVjMpnYsGGD8guooKCAlJQUfH19gWu/nDQaDWlpaVgsFqqqqjh79qxczhOK4quX -Uf2nqDNcPk9awoZqMW7+HSjMOosx9zIAZkOB0hdyz0SOfrwE/aWM/8yXzcktHzYoB6PRSFBQEIMH -D27cQdShQ4cOGAwGq8vk9V2/qKiIsLAwxowZw9///ncuX75c4xwJCQkMGzbsujmEhISg0Whq/APx -euv7+fnRvXt3XnvtNSwWC2fPnmX9+vVWMefPn1eK9DNnztRYYIaFhXHy5EmysrIArJ7bGh0dzYoV -K8jOzubcuXMcPnyYTp06Xfc4hBBCiPpQa7VaQkJC2LJlC4WFhVgsFsLDw+nTpw9w7YaISZMmkZCQ -QEJCAhaLBR8fH+69994WTl20FpHTX+D4plUci1uGW0BHQkZMJOvQbqsYnacvPSdHs3P+o9hqHHBq -583Qee9hY2tLx6HjsFRWsmfhs1SYTTi4tqHbuOkNykGj0RAYGGh1w19TUqlUzJgxg7fffrvGZ5bW -tr6zszN/+9vfgGuX7V9++eVqMRaLhbfffptXX3211jwee+wxPvzww2o51LZ+XFwc06ZNw8/Pj/Dw -cKZMmWJ189TSpUuJiYnhxRdfpGvXrjzxxBN88cUXVnMEBwfz+uuvM3DgQLRaLQEBAXz55Zeo1Wpm -zZrFwoULiYmJwc3NjejoaKZOnVrrcQghhBB1UVlu8Kn8dT2KarmLS639c+pYvq75nZ2dZfxNHC/+ -q7y8nP79+/Pqq6/W+WD7hnrttdc4f/58jU8W+DWDwcCdd97JmTNnrG5ubA3ee+893NzcmDx5ckun -IoQQ4hYgr0UVop7s7OzYtm0bixcvbtLXop48eZKUlBSWL19eZ6yLiwv9+/fnyy+/bLL1m4q3tzce -Hh4tnYYQQohbhJxJlfG19gshhBBCtAQ5kyqEEEIIIVodKVKFEEIIIUSrI0WqEEIIIYRodaRIFUII -IYQQrY4UqUIIIYQQotVRA2RlZbFnzx7y8vJQqVRERkbSr18/JchgMLB9+3auXr2KVqvlnnvuITAw -sMWSFkIIIYQQtzY1QEZGBkOHDsXPz4/c3FxWrlyJj48PQUFBAHz++ed06dKFhx9+mNzcXP71r38R -FRUljy8SQgghhBA3hQ3AoEGD8PPzA6Bdu3b4+/tjMpkAMJvNXL58mV69ein9PXv25IcffmihlIUQ -QgghxK1O2ZNqsVgoLi4mKSkJk8lk9Q7w8vJyysrKlJ89PT25evVq82YqhBBCCCFuG8rLv1NTU9m+ -fTsWi4UpU6Yo7wV3cHDA29ubQ4cOERkZycWLF9m9ezdOTk4tlrQQQgghhLi1KUVqaGgooaGh5Ofn -s3HjRvr160fXrl0BeOCBB9izZw/r16/Hz8+P3//+95w9e7bFkhZCCCGEELc29f82uLu7Ex4ezunT -p5Ui1c3Njfvvv1+JiY+Px8vLq/myFEIIIYQQtxUbk8nEhg0byMvLA6CgoICUlBR8fX2VoMzMTEpL -SwE4d+4cJ0+eVG6kEkIIIYQQoqmptVotISEhbNmyhcLCQiwWC+Hh4fTp00cJunLlCl9++SVlZWW4 -u7szZcoUtFptC6YthBBCCCFuZWqA7t2707179+sGRUZGEhkZ2WxJCSGEEEKI25u8FlUIIYQQQrQ6 -UqQKIYQQQohWR4pUIYQQQgjR6kiRKoQQQgghWh0pUoUQQgghRKsjRaoQQgghhGh1pEgVt5zjm1Zz -6P03WjoNIYQQQtyAaq9FjYuLo6ioiBkzZihtVVVVfP3116SlpWFra0ufPn246667mjVRIYQQQghx -+7AqUpOTkykvL68WdODAAQwGA3/+858pLS3lww8/xN3dneDg4GZLVAghhBBC3D6UItVgMLBv3z5G -jRrF7t27rYKOHj3KpEmTsLGxQavV0q9fP44ePSpF6m2iJD+Hb96MZtj8WJLWLiQ7+SBtAjoyYsFq -AKoqKzm+cRUZ+78CiwXP0J5ETJ2DndZJmSNj/w5Obl6DWZ+P1q0dd058Ev/egwEoKynmhw/fITv5 -ADa2au4Y8ge6jZuGysa2XuuXFuv5flUMP588jLOXHzovP+x1rlb5H4hdgP5COjZ2Gtq2D6PHw0/j -7OWnxFRUVNC7d2/Cw8NZu3btzf5KhRBCCFEHpUjdtm0bQ4YMwd7e3iqgqqoKg8FAu3bt+O6772jb -ti2enp4cPny42ZMVLcdUkMu+xc/TafgE+j7+EmUlRUpf8mex5KQe4763P8XOXkvSh29z9OMlRE5/ -AYDMA/Ec/fdi7p7zT9yDO6O/lEF+Rpoy/mDsAuwcdYxb/hXlJiO7Y57C1t6BLqP/WK/1D8a+gq3G -gQkrEyg3Gfn2nb9aFanJn61A5+nLsLnvAXAh6VurAhrAbDaTnp6ORqNp2i9OCCGEEI1iA3Ds2DHs -7OwICwurFlBRUYGNjQ0qlYrMzEwuX76MnZ0dpaWlzZ6saDkl+Tl0Gz+dwL7DUTtocXT3VPpSv1pP -z8mzsHNwBJWKbuOjuJD0rdJ/attH9HzkGdyDOwPg6htM8ICRAJQZizj//S56/ek5bGzV2OtcCX/o -Kc58vale65cVG8g69A2R057ZCJBNAAAgAElEQVTH1k6Dg0sbfO7sazXWsa0XV04d4edTR6iqqsQ/ -4m4cXNpYxeh0OjIzM9m7d2+TfWdCCCGEaDy1Xq8nMTGRadOm1Rjwy5mliooKJk+eDEBWVhbOzs7N -lqRoeWoHR37XpXe19lJDAWUmI98te9Gq3d7ZRfm34XIWbv4dapy3OOcSDi5t0DjqlDYX7wCKcy7V -a/2inEs4uLZBo3Op1veL7uOnY69z5ei/F6PPzsS/1yB6Tp5lVWgDuLu7X3cOIYQQQjQvdVpaGiqV -ijVr1gDXilGj0ciSJUuIiopCq9Xi6enJpUuXCAwMBODixYt4enrWNq+4Tdg7u2Hn4Mjwl1bg1M67 -xhidpw/6S5m0CexUrc/JwxuzoYByk1G5BF905SJOHj71Wl/r6k5pkZ7K8lJs7exrjFHZ2NJ51EN0 -HvUQpcV6Dq1+nYMrX2XoC0ut4vR6PVqtVi75CyGEEK2ATUREBNHR0cpn4sSJeHl5ER0djVarBaBX -r17s3buXyspKiouLSUpKomfPni2cumgVVCpCRjzA96tiKCspBsCszyc/I1UJCblnIkc/XoL+UgYA -xVezObnlQwDsda4ERAzhyL/exVJVSVlJMT9+spyOw8bVa3nHtl60CerE8Q2rwGKh6OcsMhK/soo5 -un4JhRfSr63n5IKrX3uwWKxijEYjQUFBDB48uDHfghBCCCGaWLXnpNYkPDycwsJCYmNjsbGxYdiw -YXh5ed3s3MRvRI/J0ZzY9D5fPT8ZVCo0jjq6T5ih7EHtOHQclspK9ix8lgqzCQfXNnQbN10Z32/m -KyStXcimJ/8PG1tbOgweTZfRU+q9/sBn3+LAey+zYcYw3IM6037wfZTk5Sj9Hnd0I2ntQoqvXsZS -VYWLTwB9ouZbzaHRaAgMDKRjx443+G0IIYQQoimoLJb/OaXUQEVFRbX2L3e5/l5BgDl1LF/X/HXt -jZXxNzZeCCGEEKIlyGtRhRBCCCFEqyNFqhBCCCGEaHWkSBVCCCGEEK1OvW6cErcv2dMqhBBCiJYg -Z1KFEEIIIUSrI0WqEEIIIYRodaRIFc3u+KbVHHr/jQaPs1iqbmjd/Mw0Pps2hNyzJ5W2ilIzm54c -yaYnR/LRg3dx+cShG1rjt6Cx378QQgjRnKrtSY2Li6OoqIgZM2YobUajkUOHDpGamoqLiwuPPPJI -syYpRMH5n0j68B1GvLyqWl/2jwfYFTMTje6/z+S1s9cyfkW8VZxjGw8C+w7Dqe1/X0ShtndgfOxO -ALbPntSo3Ha/8TRXf0pGrdFSYS7Bo1N3ImfMQ1fPV7sKIYQQojqrIjU5OZny8vJqQTY2Nvj4+FBW -VkZubm6zJSfEL8yGwlr72wR2ZPQ7G2qNcXB1J3L63KZMS9H7T8/RYfAYykuKOf75+3y/6jWGzVt+ -U9YSQgghbgdKkWowGNi3bx+jRo1i9+7dVkFarZbOnTtLkSoapbRYz/erYvj55GGcvfzQeflhr3NV -+gsvpHPi8/fJSz9FmdGAb48B9Hl8PrZ29pj1+SQsiMJsKKDMWMSmJ0cC4Ozlz4gFq+u1fsKCKIqu -XADAmPszYxZtws2/Q73zr6qs5PjGVWTs/wosFjxDexIxdQ52WqdqsXaOOoL6Didz/44Gjc/Yv4OT -m9dg1uejdWvHnROfxL/3YADKSor54cN3yE4+gI2tmjuG/IFu46ahsrEFoCQ/h2/ejGbY/FiS1i4k -O/kgbQI6Kt9PXd8/QEVFBb179yY8PJy1a9fW+7sRQgghbhalSN22bRtDhgzB3t6+JfMRt6CDsa9g -q3FgwsoEyk1Gvn3nr1ZFUtHlLIL6j6T/n1+lqqKC+Jen8lPCRkLvnYyDqztj3t3E+e93kRb/WY2X -++vy62L2s2lDGjw++bNYclKPcd/bn2JnryXpw7c5+vESIqe/UC221FDAmV1f4N4+rN7jMw/Ec/Tf -i7l7zj9xD+6M/lIG+RlpyviDsQuwc9QxbvlXlJuM7I55Clt7B7qM/qMSYyrIZd/i5+k0fAJ9H3+J -spKiX42v/fsHMJvNpKeno9FoGvz9CCGEEDeDDcCxY8ews7MjLCysrnghGqSs2EDWoW+InPY8tnYa -HFza4HNnX6sY/4i78e81iMqyUvQX03HxDuTqmRMNWqfg/Bk+eWyg8rnww94mO4bUr9bTc/Is7Bwc -QaWi2/goLiR9axWTtO4dNj5+D59MHUxVVQX9nny53uNPbfuIno88g3twZwBcfYMJHnDtjHGZsYjz -3++i15+ew8ZWjb3OlfCHnuLM15us1i/Jz6Hb+OkE9h2O2kGLo7vntfH1+P4BdDodmZmZ7N3bdN+b -EEIIcSPUer2exMREpk2b1tK5iFtQUc4lHFzbWN3U9L9K8nM4/MGblJtKaHtHGCobWypKihu0Tn32 -pDZGqaGAMpOR75a9aNVu72x9PL3/9BztB97LlmfG4XNnP+yd3eo93nA567rbD4pzLuHg0gaNo05p -c/EOoDjnklWc2sGR33XpXW18fb7/X7i7u9cZI4QQQjQXdVpaGiqVijVr1gDX9qYZjUaWLFlCVFQU -Wq22hVMUv2VaV3dKi/RUlpdia1fzVpLERbMJvXcygX2HA5D+7VayDn1jFWNrp6G0qPabp26UykaF -pbLSqs3e2Q07B0eGv7QCp3bedYy3JfyhmRyLW0pA5FBsbG3rNV7n6YP+UiZtAjtV63Py8MZsKKDc -ZFT2sBZduYhTPZ8cUJ/v/xd6vR6tViuX/IUQQrQKNhEREURHRyufiRMn4uXlRXR0tBSo4oY5tvWi -TVAnjm9YBRYLRT9nkZH4lVVM8dXLqGyuPbLXcPk8aQnVz4i6+XegMOssxtzLAJgNBU2eq87Dh4tH -94HFQmmx/lqjSkXIiAf4flUMZf85u2vW55OfkVrjHEF9R2CrcSB9z5Z6jw+5ZyJHP16C/lIGAMVX -szm55UMA7HWuBEQM4ci/3sVSVUlZSTE/frKcjsPG1euY6vP9w7XHzAUFBTF48OB6zSuEEELcbNWe -k1qTjRs3cvHiRcrKyigrK2Px4sW4uLgwderUm52fuAUMfPYtDrz3MhtmDMM9qDPtB99HSV6O0h85 -/QWOb1rFsbhluAV0JGTERLIOWT9hQufpS8/J0eyc/yi2Ggec2nkzdN572NjaNlme3SfMYO+i2Wx4 -fAReYXcx8Jk3AegxOZoTm97nq+cng0qFxlFH9wkzlD2kVlQqejz0FN+vjqH9oHuxtbOvc3zHoeOw -VFayZ+GzVJhNOLi2odu46cqU/Wa+QtLahWx68v+wsbWlw+DRdBk9pd7HVdf3D6DRaAgMDKRjx46N -+OaEEEKIpqeyWCyWG5mgqKio1v7lLrXvhZtTx/J1ze/s7CzjW/F4IYQQQojGkNeiCiGEEEKIVkeK -VCGEEEII0epIkSqEEEIIIVqdet04JURjyZ5WIYQQQjSGnEkVQgghhBCtjhSpQgghhBCi1ZEiVdzS -KkrNbHpyJJueHMlHD97F5ROHWjql60pOTsbb25ukpCSlraSkhODgYIKDg7G3t2f37t21zCCEEELc -OqrtSY2Li6OoqIgZM2YobZcuXWL37t1cvXoVe3t7hg4dSmhoaLMmKkRjqO0dGB+7E4Dtsye1SA7x -8fHce++9tGnTRmlzcnIiMzPTKs7b25vx48fj5+entDk6OpKRce1NVL17926WfIUQQojWwKpITU5O -pry83CrAYrGQmJjI0KFD8fHx4dy5c8TFxTFr1iy56UWIeurWrRvHjh2rNcbT05Nly5Y1U0ZCCCFE -66Zc7jcYDOzbt4/+/ftbBahUKiZNmoSvry8qlYoOHTrg5eXFlStXmj1ZcXsqyc9h++yHMBsK2PfP -F/h06mASFkQp/WUlxRxYvoCNj4/g85n/x/GNq7BUVdZ7/qrKSn78NJYvnh7NF3++j+/ee4lyk9Eq -pqKigh49evDYY4811WEphg0bplzSV6vVpKSkNGh8RUUFCxYsICQkhE6dOjF16tQ6n6oghBBCtHZK -kbpt2zaGDBmCvb19rQOqqqooKCigXbt2Nz05IX5hKshl3+LnCYgYwvjlOxgQHaP0HYxdACoYt/wr -7l0Yx8UjiZz68uN6z538WSxXTv3AfW9/yv1Lt6Fx1HH04yVWMWazmfT0dE6dOtVUh6TYtWsXGRkZ -ZGRk4OHh0eDxr7zyComJiRw5coS0tDRcXV2ZO3duk+cphBBCNCcbgGPHjmFnZ0dYWFidAw4ePEj7 -9u1xc3O76ckJ8YuS/By6jZ9OYN/hqB20OLp7AlBmLOL897vo9afnsLFVY69zJfyhpzjz9aZ6z536 -1Xp6Tp6FnYMjqFR0Gx/FhaRvrWJ0Oh2ZmZns3bu3UfmfOHECDw8P5bNt27ZGzVOTpUuX8vrrr6PT -6VCpVMydO5etW7c22fxCCCFES1Dr9XoSExOZNm1ancEZGRkcOXKEqVOnNkNqQvyX2sGR33WpfuNQ -cc4lHFzaoHHUKW0u3gEU51yq17ylhgLKTEa+W/aiVbu9s0u1WHd39wZm/V/12ZPaGLm5uRgMhmrb -EG4kVyGEEKI1UKelpaFSqVizZg1wbX+b0WhkyZIlREVFodVqAcjOzmbz5s08/PDD6HS62uYUotk4 -eXhjNhRQbjJip3UCoOjKRZw8fKrFqmxUWCqt96raO7th5+DI8JdW4NTOu9a19Ho9Wq0WjUbTdAfQ -ADY2NlRUVFi1tW3bFp1OR3x8PAEBAS2SlxBCCHEz2ERERBAdHa18Jk6ciJeXF9HR0UqBeuHCBT79 -9FOlT4jWwl7nSkDEEI78610sVZWUlRTz4yfL6ThsXLVYnYcPF4/uA4uF0mL9tUaVipARD/D9qhjK -SooBMOvzyc9ItRprNBoJCgpi8ODBN/uQriswMJAdO3ZgsVjIz88Hrt3Y+MQTTzBz5kz0+mvHlJOT -c1PO2gohhBDNqc6H+ZeXl/PRRx9hNpv55JNPWLhwIQsXLuTf//53c+QnRJ36zXyFyvJSNj35f2x/ -biI+d/ahy+gp1eK6T5hBdvJBNjw+gkPvv6G095gcTbs7uvLV85PZPOsPfPNmNCX5OVZjNRoNgYGB -dOzY8aYfz/XMnz+fhIQEAgICePrpp5X2mJgYIiIi6NOnD2FhYYwdO5bs7OwWy1MIIYRoCiqLxWK5 -kQnqetTNcpfqe/t+bU4dy9c1f13PapXxv+3xQgghhLg9yWtRhRBCCCFEqyNFqhBCCCGEaHWkSBVC -CCGEEK2OFKlCCCGEEKLVkSJVCCGEEEK0OlKkCiGEEEKIVkeKVHHbsFiqamzfPnsSl08cuunr79+/ -nyNHjtQZFxMTY/Uc1Pqqqqr5+OorOTkZb29vkpKSlLaSkhKCg4MJDg7G3t6e3bt339AaQgghRH1V -K1Lj4uJYtWqVVVtWVhbr1q1j0aJFvPvuuxw4cKDZEhSiKRSc/4mv//5Ei+aQnJxMampq3YGNcPz4 -ce65554a++Lj41Gr1Xh4eCifoKCganHe3t6MHz8ePz8/pc3R0ZGMjAwyMjLo3r37TcldCCGEqIn6 -1z8kJydTXl5eLSgjI4OhQ4fi5+dHbm4uK1euxMfHp8ZfdEK0RmZDYYutXVpayrx584iLi6OyspKE -hAQWL15MmzZtmmyN3NzcWvu7detW56tSPT09WbZsWZPlJIQQQtwIpUg1GAzs27ePUaNGVbukN2jQ -IOXf7dq1w9/fH5PJ1HxZitva9tmTCLvvEdLiP8Nw+TweHbvR/6m/Y+9yrcgrvJDOic/fJy/9FGVG -A749BtDn8fnY2tlj1ueTsCAKs6GAMmMRm54cCYCzlz8jFqxW1igvKWbvP57j8onD6Dx9GfSXhTj/ -zl/pr6iooHfv3oSHh7N27doG5f/BBx9w6NAhzpw5g0ajYc2aNZhMJqVIzc/PZ+bMmezZs4f27dvT -vn173N3dlfEpKSm88cYbHDlyhIKCAkaNGkVsbCwODg7k5OQwbNgwrl69SmFhIcHBwQB06NCBXbt2 -1Su/YcOGkZ6eDsCFCxdITk6mS5cu9T6+iooKXnvtNeLi4rBYLAwYMIB//vOf8jYxIYQQN0S53L9t -2zaGDBmCvb19jYEWi4Xi4mKSkpIwmUwt+g5zcftJ/3Yrg597hwdWfY2N2o4fPnpX6Su6nEVQ/5GM -eXcT45bvoPBiOj8lbATAwdWdMe9uIjJqLp6hPRgfu5PxsTutClSAHz+Npev907h/6Va0bm058fkH -Vv1ms5n09HROnTrVqPxVKhUWiwW1Ws2MGTPw8fFR+qKiorCzsyMrK4utW7dy6dIlq7Fnz57lwQcf -5Pjx45w7d45Tp06xcuVK4NrZz+PHj7Ns2TIGDBigXJqvb4EKsGvXLmWch4dHg4/tlVdeITExkSNH -jpCWloarqytz585t8DxCCCHEr6kBjh07hp2dHWFhYVy8eLHGwNTUVLZv347FYmHKlCmo1eoa44S4 -GbrePxVtm2sFVIe7x3Iw9hWlzz/ibgDKTUYM2Zm4eAdy9cwJQhsw/11TnqVt+2sjgvrdw09fb7Tq -1+l0ZGZm4ujo2ODcp0+fzo8//khQUBBRUVHMmTMHV1dXAAoKCti8eTO5ubnY29vj4eHB8OHD+fnn -n5XxY8eOBaCoqIi0tDQ6duzI4cOHG5TDiRMnrArQNWvWMHr06AYfS02WLl3Kzp070el0AMydO5de -vXqxdOnSJplfCCHE7Umt1+tJTExk2rRptQaGhoYSGhpKfn4+GzdupF+/fnTt2rWZ0hTiv9z8O1Ba -rFd+LsnP4fAHb1JuKqHtHWGobGypKClu0Jw2v/qjS+vWlsrysmoxv74E3xAajYZVq1bxzDPP8NZb -bxESEkJ8fDx33nmncvaytv2ply5dIjo6muLiYnr16oVarUav1183vib12ZPaGLm5uRgMBh577DGr -9sZ+V0IIIcQv1GlpaahUKtasWQNc219mNBpZsmQJUVFRaLVaqwHu7u6Eh4dz+vRpKVJFiyi6nIXO -01f5OXHRbELvnUxg3+HAta0BWYe+sRpja6ehtOjGbp7S6/VotVo0Gk2jxoeFhbFu3Tqee+45Vq5c -yfLly/H09CQ/Px+z2YyDg0ON4yZNmkR0dDQTJkwAYN26dWzevNkqxsHBgby8vEblVV82NjZUVFRY -tbVt2xadTkd8fDwBAQE3dX0hhBC3F5uIiAiio6OVz8SJE/Hy8iI6OhqtVovJZGLDhg3KL8CCggJS -UlLw9fWtY2ohmk7mgQQqy0spKykm+bMVdBx6v9JXfPUyKptr26sNl8+TlrCh2ng3/w4UZp3FmHsZ -ALOhoEHrG41GgoKCGDx4cINzj46OZsWKFWRnZ3Pu3DkOHz5Mp06dAPDz86N79+689tprWCwWzp49 -y/r1663Gnz9/HltbWwDOnDmj7Ef9tbCwME6ePElWVhYAV69ebXCedQkMDGTHjh1YLBby8/OBa3tt -n3jiCWbOnKmc3c3JybkpZ22FEELcXup8mL9WqyUkJIQtW7awaNEi1qxZQ0BAAH369GmO/IQAQG3v -wJezH2bLrLF4dA4nbPQUpS9y+guc+OIDtjxzP8fi3iNkxMRq43WevvScHM3O+Y+yOXos+xa/QFVl -Zb3X12g0BAYGNuqGwVmzZnHs2DEiIyMZO3YsU6ZMsXpYf1xcHImJifj5+TFr1iymTJliNX7p0qW8 -+eabdO3alRdffJEnnqj+vNfg4GBef/11Bg4cSGhoKI888ki1s543av78+SQkJBAQEGCVf0xMDBER -EfTp04ewsDDGjh1LdnZ2k64thBDi9qOyWCyWG5mgqKio1v7lLi619s+pY/m65q/rMTcy/rc9Hq49 -guquKc/i3S2iztjW7L333sPNzY3Jkye3dCpCCCFEqye36IvfiBv6W6pV8Pb2Vu6AF0IIIUTtpEgV -opmMGzeupVMQQgghfjOkSBWt3n0L41o6BSGEEEI0szpvnBJCCCGEEKK5SZEqhBBCCCFaHSlShRBC -CCFEqyNFqvjNMOZeJuGVGXw27W62/vUBsn88YNWfn5nGZ9OGkHv2pNJWUWpm05Mj2fTkSD568C4u -nzjU3Gkr9u/fz5EjR+qMi4mJsXoOaX1VVVU1Ji1FcnIy3t7eJCUlKW0lJSUEBwcTHByMvb09u3fv -vqE1hBBCiPqqVqTGxcWxatWq6w6oq1+Im+WHdYtw9Q1i/Iqd3PvGv/EM7WnV79jGg8C+w3Bq66W0 -qe0dGB+7k/GxO2kT2Km5U7aSnJxMamrqTZn7+PHj3HPPPTX2xcfHo1ar8fDwUD5BQUHV4ry9vRk/ -fjx+fn5Km6OjIxkZGWRkZNC9e/ebkrsQQghRE6u7+5OTkykvL79ucF39QtxMBed/ov+fX8XWzr7G -fgdXdyKnz23mrOpWWlrKvHnziIuLo7KykoSEBBYvXkybNm2abI3c3Nxa+7t161bnq0o9PT1ZtmxZ -k+UkhBBC3AjlTKrBYGDfvn3079+/xsC6+oW4WX741yK+eHoMhp+z+PbtZ9n05EgSFkQp/QkLopRL -+v96IJzCC+kNmr+qspIfP43li6dH88Wf7+O7916i3GS0iqmoqKBHjx489thjDc7/gw8+4NChQ5w5 -c4aLFy/Sv39/TCaT0p+fn89DDz2El5cXffv25dSpU1bjU1JSeOSRRwgNDeV3v/sdjz32GGazGYCc -nBy6d+/O5MmT2b9/v3JpftiwYfXOb9iwYco4tVpNSkpKg46voqKCBQsWEBISQqdOnZg6dWqdbxoT -Qggh6qIUqdu2bWPIkCHY29d8lqqufiFull5//Av3L92KzsOXofOWMz52JyMWrFb6RyxYrVzSd3Bx -b/D8yZ/FcuXUD9z39qfcv3QbGkcdRz9eYhVjNptJT0+vVkDWl0qlwmKxoFarmTFjBj4+PkpfVFQU -dnZ2ZGVlsXXrVi5dumQ19uzZszz44IMcP36cc+fOcerUKVauXAlcO/t5/Phxli1bxoABA5RL87t2 -7ap3brt27VLGeXh4NPjYXnnlFRITEzly5AhpaWm4uroyd27rO6MthBDit8UG4NixY9jZ2REWFlZj -UF39QvyWpX61np6TZ2Hn4AgqFd3GR3Eh6VurGJ1OR2ZmJnv37m3w/NOnT6dz584EBQUxd+5c9Hq9 -0ldQUMDmzZtZsmQJ9vb2eHh4MHz4cKvxY8eOZfTo0ZjNZk6dOkXHjh05fPhwg3I4ceKE1Z7Ubdu2 -Nfg4rmfp0qW8/vrr6HQ6VCoVc+fOZevWrU02vxBCiNuTWq/Xk5iYyLRp02oMqKtfiN+yUkMBZSYj -3y170ard3tmlWqy7e8PP0gJoNBpWrVrFM888w1tvvUVISAjx8fHceeedytnL2vanXrp0iejoaIqL -i+nVqxdqtdqq0K2P+uxJbYzc3FwMBkO1bRCN/a6EEEKIX6jT0tJQqVSsWbMGuLa/zGg0smTJEqKi -oqirX4jfCpWNCktlpVWbvbMbdg6ODH9pBU7tvGsdr9fr0Wq1aDSaRq0fFhbGunXreO6551i5ciXL -ly/H09OT/Px8zGYzDg4ONY6bNGkS0dHRTJgwAYB169axefNmqxgHBwfy8vIalVd92djYUFFRYdXW -tm1bdDod8fHxBAQE3NT1hRBC3F5sIiIiiI6OVj4TJ07Ey8uL6OhotFotdfUL8Vuh8/Dh4tF9YLFQ -WvyfM5EqFSEjHuD7VTGUlRQDYNbnk59h/agoo9FIUFAQgwcPbvC60dHRrFixguzsbM6dO8fhw4fp -1Ona47D8/Pzo3r07r732GhaLhbNnz7J+/Xqr8efPn8fW1haAM2fOKPtRfy0sLIyTJ0+SlZUFwNWr -VxucZ10CAwPZsWMHFouF/Px84Npe2yeeeIKZM2cqZ3dzcnJuyllbIYQQtxd5mL+4bXSfMIPs5INs -eHwEh95/Q2nvMTmadnd05avnJ7N51h/45s1oSvJzrMZqNBoCAwPp2LFjg9edNWsWx44dIzIykrFj -xzJlyhSrh/XHxcWRmJiIn58fs2bNYsqUKVbjly5dyptvvknXrl158cUXeeKJJ6qtERwczOuvv87A -gQMJDQ3lkUceqXbW80bNnz+fhIQEAgICrPKPiYkhIiKCPn36EBYWxtixY8nOzm7StYUQQtx+VBaL -xXIjE9T1qJnlLtX39v3anDqWr2t+Z2dnGX8Lj7+VvPfee7i5uTF58uSWTkUIIYRo9dR1hwghmoK3 -tzc6na6l0xBCCCF+E6RIFaKZjBs3rqVTEEIIIX4zZE+qEEIIIYRodeRMqripbqc9p0IIIYRoOnIm -VQghhBBCtDpSpAohhBBCiFZHilQhfiMslqqWTkEIIYRoNtX2pMbFxVFUVMSMGTOUtuTkZLZu3Yqd -nZ3SNnr0aLp06dI8WYrfrNKiQj55dCB9Zswj5J4HAdi/ZB45acmMe297C2f321Hw/+3de1BUV57A -8W9DQ9PSAoJAEKFBJQoqEYKoo5MYokbjOIxi1AxaGaM4mq00MymKRGIm6kaTGGp11PgcfOyuYSer -jovRqFEnojFRoyyorIw8hAhGRaB52Tx7/2C8sQNC4wNRf5+qrqLu+f3O/d0rlKdPn3s6/x+c2pLI -mPc3POxShBBCiA5hMUhNT0+nrq6uWZDJZCIsLIxx48Z1WGHi8aHp6sKl4wfo+9JUGuvruH7x7MMu -6ZFjKi972CUIIYQQHUoZpJaXl3P06FHGjRvHoUOHLIJu3ryJo6NjhxcnHg/2jk6YjCWYjCUUZ5/D -2duPsh9ylfbGhgYytm8g79heMJvxCAwl/PW3sdM2/c6V/ZDD2Z1/4UZOJrVV5XiHjGDo7xdga6cB -oLrkGsfXLsT4Qw42dva49Qoi5Ldv0tWzJwBbo4KZtiUVTVcXANKSV1NvqmbwzHgl//BHBkYtWMup -zcsoSv+Wbr4BjFm4sc36fjz/PZkpW6mvuUnl9SuEz4znRNJHOPXQM/q9dVZd3xfxrzJs7p8497ck -rpw9ic7Dm+ffWkbXp71JRsEAAA8ySURBVHwwGUs4sDAGU3kptVUV7Jg3FoCunj5KfQD19fUMHjyY -QYMGsXnz5gf2bymEEEJ0FGVN6u7du4mIiECj0TQLMplMFBQUkJyczLZt2zhz5kyHFikebfWmavRD -R1Fw4hD5335Fj0HDLdrTP1/L1czv+dUnf2Xiqt3Yd9FxZttKpb3iSgF+w8fy6+U7mLTmS8ou5/CP -A9tvy1+HzsObqLX7mLgyBf/hY5UBoLVulhZzdMU7+IZHELXmS0YYllhdX1H6t4TPmk/3gIGc/dsm -fvXxZxRnn6Oq+Eer8gG+XbuQARNnMXFVCloXN87uTALAwdmVXy/fwZCYBDwCQ4hau4+otfssBqjQ -9Deak5NDZmZmu65bCCGE6KxsANLS0rCzsyMoKKjFoP79+xMeHk5UVBQREREcO3aMtLS0Di1UPLoa -6mrwf248BScPU3IpC4++z1i0X9j7GaHRsdg5dAGVioFRMfxw6mul3Sf8BXzCnqehtgbj5RycvPQW -Swa6uHlyNfM0P2aeprGxAZ/wF3Bw6tauGqtLrjEwajb6YaNRO2jp4uphdX3OPf1x8emNk5ce79AR -aJy64djdi4qrl63KBwj5rQG3XoFourrg94uXMBbmtat+nU7HpUuXOHLkSLvyhBBCiM5KbTQaSU1N -ZdasWXcM8vHxUX728vJi+PDhXLhwgZCQkI6oUTwGnHv4YSovxTtkBKhUyvGa8lJqb1bxzer3LOI1 -XZ2Un6tLrnEy6SPqblbj1icIlY0t9dWVSntw1Gw0OmfO/OcKjEWX8Al7ntDoWIuBZlvUDl14qv/g -Zsetqe+W2y5L+dnafBv1T8vDtS5uNNTVWl37La6uru3OEUIIITordVZWFiqVik2bNgFNa9uqqqpY -uXIlMTExaLXaZkkqlQobG9m9SrTP828tw17nrHwMDk0PVdk5dGH0n9bh2N2rxbzUf4sncHw0+mGj -Acj5OoWCE4eVdpWNLf3GTaPfuGnUVBo5sXEp367/V16cvwoAG7UdpvJSZU1qY33zhwPvxJr6HmT+ -LbZ29tRUtP7wlNFoRKvVYm9vf9fnEUIIIToLm/DwcAwGg/KaMmUKnp6eGAwGtFotVVVVbN++ndLS -UgDKysr45ptvCAwMfMili0dN16d80eicLQ+qVPQd8wrfbVhC7T9nR03GEkryLighldevoPrnm6Ly -K/lkHfhviy7OfLaSsh9yANA4OuHcsxeYzUq7Uw89OV/vpqGuhsvfHyE3tR1bX1lR3wPN/ycXn96U -FWRTVXylqY/yUov2qqoq/Pz8GDlyZLv6FUIIITqrZvuk/pyjoyN9+vRh586dVFRUYGNjw5AhQwgO -Du6I+sQTICTawNkdf2HvO9GgUmHfRUfw5Dm4+vcDYMjs+WTs2EBa8mpcfAPoO2YKBSd+2oHCvc9A -Tm1eRuX1K5gbG3Hq4cvQmAVKe/jMeI6vXUjO1ynoh40mNDq2XYPEtup70PkAOg9vQqMN7FvwO2zt -HXDs7sWL736Kja0tAPb29uj1egICAqzuUwghhOjMVGbzbVNOd6GioqLV9jVOzdfu3e7tNk7fVv9d -u3aV/E6cL4QQQghxN2RhqRBCCCGE6HRkkCqEEEIIITodGaQKIYQQQohOp80Hp4S4F7KmVQghhBB3 -Q2ZShRBCCCFEpyODVCGEEEII0enIIFU8Mczmxke6/7YcO3aM06dPtxm3ZMkS3nzzzXb339h4b9eX -np6Ol5cXp06dUo5VV1fj7++Pv78/Go2GQ4cOtdLD4+Fu778QQjxpmg1Sk5OT2bBhQ7PA7Oxs1q9f -T2JiIhs3biQnJ6dDChTifijN/wdfLZ77yPZvjfT0dC5caN83WVkrIyODl156qcW2/fv3o1arcXd3 -V15+fn7N4ry8vIiKiqJnz57KsS5dupCXl0deXt5df0HIhAkTcHd3R6/X4+bmxvjx48nPz7+rvoQQ -QnQeFg9OpaenU1fX/HvNi4qK2LNnD9OmTcPT05MbN25QU1PTYUUKca9M5a1/731n7x/g3LlzdOvW -DW9vb4vjNTU1vPvuuyQnJ9PQ0MCBAwdYsWIF3bp1u2/nLi4ubrV94MCBpKWltRrj4eHB6tWr71tN -t0tMTOS1116jvLycpUuXMm/ePPbu3ftAziWEEKJjKDOp5eXlHD16lOHDhzcLSk1NJSIiAk9PTwDc -3Nzo0aNHx1Upnmi11ZUcX7OQ7b8fw843XiZj+wbMjQ1K+9aoYGoqfhokpiWv5tTmZQCYjCWk/DGK -oyve4dr/pbFj3lh2zBvLgYUxSvwX8a+Sm7qHL999jb++PpLDH75JTXnpfesfoL6+npCQEGbOnHnX -92Hbtm189913zY4nJSVx4sQJLl68yOXLlxk+fDg3b95U2ktKSpQ3mMOGDSMzM9Mi//z580yfPp3A -wECeeuopZs6ciclkAuDatWsEBwcTHR3NsWPHlI/mR40aZXXdo0aNUvLUajXnz59v13XX19ezcOFC -+vbty9NPP83rr79+x10jnJycmDx5ssU1WpOfnJxMSEgI3t7ePPvss6SkpChtRqOR2bNn4+vrS+/e -vfnggw9oaPjp96+wsJCwsDCuX7/O9OnT8fT0tLg/bd1/IYQQLVMGqbt37yYiIgKNRtMs6OrVq7i4 -uLBnzx62bNnCoUOHqK2t7dBCxZPr27ULQQWT1uxl/LJkLp9OJXPPNqtyHZxd+fXyHQyJScAjMISo -tfuIWruPMQs3WsTlfJ3CyLhEXtnwFTZqO77/j+X3tX+TyUROTs4DG6CoVCrMZjNqtZo5c+ZYvImM -iYnBzs6OgoICUlJSKCwstMjNzs5m6tSpZGRkkJubS2ZmJuvXrweaZj8zMjJYvXo1I0aMUD6aP3jw -oNW1HTx4UMlzd3dv97UtWrSI1NRUTp8+TVZWFs7OziQkJLQYW1xcTFJSEqGhoVbnf/7558yfP5/N -mzdTWFjItm3bqK6uVtpjYmJQqVTk5ORw6tQp9uzZw5///GeL8/74449ER0fzm9/8htzcXLZu3WqR -39r9F0II0TIbgLS0NOzs7AgKCmoxqKKigsOHDxMaGsrUqVO5cePGE/GAg3j4aqsqyP/uIGGvxWFj -q0ajc2bQtH/h4lc77ut5Bkx8HW03d2zUdvR+IZLCM8fua/86nY5Lly5x5MiRdueOHTuWwYMHs2XL -FuLj4xk8eDBxcXFK++zZs+nXrx9+fn4kJCRgNBqVttLSUnbt2sXKlSvRaDS4u7szevRoi/4jIyOZ -MGECJpOJzMxMAgICOHnyZLtqPHv2rMWa1N27d7f7Ou9k1apVLF26FJ1Oh0qlIiEhwWKmEyAuLg69 -Xo+Hhwf19fVs3LjR6vzly5fz4YcfMmjQIAD69evHtGnTACgrK2Pnzp0kJiZiZ2eHq6srixcvtugf -mmZTExISmDx5Mo6OjsqSDGvuvxBCiJapjUYjqampzJo1645Bjo6OREZG4uLiAsCQIUOa/SchxINQ -ea0QB6du2HfRKcecvHypvPbgZqNcfHpTU2lsO7CdXF1d7ypv3759AMyfP5+wsDCioqIs2u3t7dmw -YQN/+MMf+Pjjj+nbty/79+/nmWeeUWYvW1ufWlhYiMFgoLKykrCwMNRqtcVA1xrWrEm9G8XFxZSX -lzdbJvHze5mYmMj06dMZMGAAY8aMwc3Nzer8ixcv0r9//xbPn5eXR/fu3XF2dlaO9enTh7y8PIs4 -nU7HyJEjW8xv6/4LIYRomTorKwuVSsWmTZuApvVbVVVVrFy5kpiYGLRaLe7u7hQXFyuDVJ1O11qf -Qtw3ju5emMpLqbtZhZ3WEYCKq5dxdP/p42wbtR2m8lI0XZt+Pxvrmz/8Z2tnb7GutDUVVwrQefz0 -cNL96t9oNKLVarG3t7eqjvYKCgpi69atxMXFsX79etasWYOHhwclJSWYTCYcHBxazHv11VcxGAxM -njwZgK1bt7Jr1y6LGAcHB27cuPFA6r7FxsaG+vp6i2Nubm7odDr279+Pr69vq/m2trYsWrSIBQsW -MHHiRNRqtVX5fn5+ZGVltbi7gF6vp7i4mIqKCuXb0XJzc1vcvaAl1tx/IYQQLbMJDw/HYDAorylT -puDp6YnBYECr1QJNM6d///vfMZlMmM1mjh8/ztNPP/2QSxdPAo3OGd/wCE7/+3LMjQ3UVlfyv/+1 -hoBRk5QYpx56cr7eTUNdDZe/P0Ju6hfN+nHx6U1ZQTZVxVcAMN32YBTApeMHaKiroba6kvTP1xHw -4sT72n9VVRV+fn4tzrZZ65e//GWLf3cGg4F169ZRVFREbm4uJ0+eVOJ69uxJcHAwH3zwAWazmezs -bD777DOL/Pz8fGxtbYGmWcVb61FvFxQUxLlz5ygoKADg+vXrd30dd6LX6/nyyy8xm82UlJQATWtt -586dyxtvvKHM7l67du2Os7avvPIKWq2WLVu2WJ0/b948EhISlO278vPz+eSTT4CmGdfIyEji4+Np -aGjAaDTy/vvvt/rJ0+2suf9CCCFaZtVm/gEBAYSGhrJp0yZlC5mIiIgHWpgQt/zijUU01NWwY97L -fBE3hR7PDKX/hBlKe/jMePKO7WXnG+MpyviO0OjYZn3oPLwJjTawb8Hv2GWI5OiK+TTe9oS2WuPA -nvjf8j+xkbj3G0TQfe7f3t4evV5PQEDAXd+Hl19+mYEDBzY7HhsbS1paGkOGDCEyMpIZM2ZYbBaf -nJxMamoqPXv2JDY2lhkzZljkr1q1io8++ogBAwbw3nvvMXdu8/1e/f39Wbp0Kc899xyBgYFMnz69 -2aznvVqwYAEHDhzA19fXov4lS5YQHh7O0KFDCQoKIjIykqKiohb7UKlULF68mEWLFik7FLSVP2vW -LOLi4pg0aRJ6vZ6oqCh69eqltCclJWEymejVqxehoaGMHj2at956y+rrauv+CyGEaJnKbDab76WD -O20Fc8saJ6dW299u4/Rt9X/rIzjJfzzzO8IX8a/y7Iw/4jUw/GGXck8+/fRTXFxciI6OftilCCGE -EPdM3XaIEE+Ce3qv1il4eXnJenEhhBCPDRmkCvGYmDRpUttBQgghxCNCBqniiferZckPuwQhhBBC -/MwDX5PaGdYcCiGEEEKIR4tVT/cLIYQQQgjRkWSQKoQQQgghOh0ZpAohhBBCiE6n2YNTycnJVFRU -MGfOHKDpm3JWrVplEdPQ0IBOpyM2tvmm5kIIIYQQQtyr/wcr3UlLfH/DGgAAAABJRU5ErkJggg== -" + xlink:href=" eJzs3Wd0VWX69/HvSS8nhZBiAmnEQBKEPyBFBBXpPkoRFM0EZqQ5IiOOMwqCqIgiOqA40hQGkVFk pKkoCAgKCCJGYKgDY0JCIIQSAuk953nBeOSYwDnpkfw+a7FWsu927eLyyr3vvbchLzfHhIjI/5w9 e5abbrqpvsNoNHS8pSboOpIbkUFJqoiIiIg0NHb1HYCIiIiIyK8pSRURERGRBkdJqoiIiIg0OAaT yVStNanZ2dnXLffw8KhO9yIiIiLSCGkmVUREREQaHCWpIiIiItLgKEkVERERkQbHwZZKubm57Nmz h2PHjuHp6cnw4cNrOy4RERERacRsSlLt7OwICgqiqKiI9PT02o5JRERERBo5m273u7q6EhUVRVBQ UG3HIyIiIiKiNakiIiIi0vAoSRURERGRBkdJqoiIiIg0OEpSRURERKTBUZIqIiIiIg2OwWQymaxV Wr16NadPn6aoqIiioiKMRiOenp6MGjWK7Ozs67b18PCosWBFREREpHGwKUm9HiWpIiIiIlLTdLtf RERERBocJakiIiIi0uAoSRURERGRBkdJqoiIiIg0OEpSRURERKTBUZIqIiIiIg2OktSrZCQfZ+Xo nqQnHK6X8U2mskq3KSksYM24/qwZ158PHrqVtEN7aiGyK6oSn4iIiEhVONhSKTU1la1bt3LhwgWc nZ3p1asX0dHRNg+y78O/c/SLD3FwdTVv849qT89Jf698xLXIrYkfoV174940oM7HvnTyv8S/P5u+ Ly6qVDsHZxeGLtwIwBcTYyuss2Zcf0oKCzDY2WP0C6TN/aMJ7nx3ncQnIiIiUhVWk1STycSOHTvo 1asXQUFBnDhxghUrVvDkk09W6kX9rfo9SKeRE6sVbG1z8fKhy5gp9TJ2QdblWu2/93MLaNoimvPH /s32ORMpKSogvPs9Nrev7fhERERErmY1STUYDMTG/jJDFxERQUBAAOfOnauxr0ltm/1XvJtH0O7h x82/+0W2ofWgR4ArM4Qx9w3n+KaVZKWdxC+yDd3GT8fZswkAZaWlHFy9iKSdG8Bkwj+6A51HTcLR 1R2AvIzzfP3aBHpPXUj80r9x5sBumoRE0nfaYgA2TxtL9rlTAOSmn2Xgm2vwDo4A4OyRHzm6bhkl hfnkXEij88iJ7FnyGp5BofR5/h2bxv9iYixdH3uBw58sIe3QDxj9m3HXX/6Gx03BFGRmsHnaWAqy LlGUm82acf0B8AgINsd3+VQih9b+g4uJRynKzaJZ++7c9sep2Ds6V+5AGwz4R7en0yNPs2/5XHOS er3+ayq+kpISOnXqRLt27Vi6dGnl4hYREZFGp9JrUsvKyrh06RK+vr41FsRtY5/jv1vWcOnkT6Tu 30XO+VRiBoywqJO4bR09np7Ng4u+ws7BkR8/mGMuO7ByIeeO/sh9sz7m/rmf4+RmZN/yty3a519K 59u3niWkc0+GLviS7hNmmMv6TlvM0IUbGbpwIy6ePuXiO3NgN51HT8Y3sg2HPnmP+17/iPSEw+Sm n7V5/N0Lp3HL/aO5f+46XL2bcmjtEuDK7O3AOWvoMnYK/tHtzXH8nAACZKelENatPwPnrGHIgi+5 fDqR/25eXcWjDc3adSP7bArFeTlW+6+p+AoKCkhMTOTo0aNVjltEREQaj0onqbt376ZFixZ4e3tX qt3xTStZ8ftu5n95GRfMZS5ePnR65Bm+WziNH9+fze2Pv4TBzt6i/S33j8K1iR92Do5E3D2I1H07 zWXHNnxEh7gncXRxA4OBNkPHcip+m0X7vIzztBk6htCufXBwccXNx9/m2L2ah+MdHIFnYCjNOnTH 2bMJ7r6BZJ87bfP47X83gaYtonH28Cbs9n5kpibZPH5w57sJ7ngXpUWFZJ5OxDMwlAs/HbK5/a85 uhmxd3Qm//LFGunflvZGo5Hk5GS2b99e5bhFRESk8bDpwamfJSUlsXfvXkaNGlXpgVr1G3bdNamh t/XihyUz8WvZFp+wVtftyzs4gsKcTAAKsy5RlJ/LrnnPW9Rx9vC0+N3BxY2bWneqdNxXMxjK/2zr +HYOvxxqV++mlBYX2TxuXsZ5fljyGsX5eTS9OQaDnT0l/5sFrYqivBxKiwtx9fGrkf5tbe/jU36W WkRERKQiNiepZ86c4dNPP+V3v/sdRqOxxgM5sOpdQm7rTdrBPZz7zz4Cojtcs252WgpG/2YAOHt4 4+jiRp8X3sHdN7DG47Kmpsa3d3SiMLvih5N2vDmR6HvjCO3aB7iy9CFlz9fl6hnsDJhKS62OdXrv DjyDwq7M/NrYf03El5mZiaurK05OTlZjFBERkcbNptv9p06d4uOPP2bYsGEEBNT865kyko5xYsd6 Ov7+L9w+7gV2zXue4oI8izrJ322mtLiQorwcDqx8h8he918pMBho1fdBvl80g6L/zd4VZGaQkXSs xuOsUA2N7x0cweWUBHLT0670kXXJXJZzIQ2D3ZVTlZV2kuObV1XYh9EviNP7vgWTyTzT/Gvnj+1n 7z/fpH3s+Er1X934cnNzCQsLo0ePHtc8BiIiIiI/szqTWlxczAcffIDBYOBf//oXpf+bqQsKCmL4 8OE2D3R80yoSd3xh/t296U0MmL2SstISds6dSpcxk3F0deemWzrT/NY7iV/6N24fN+2XQJ1dWD/x dxTmXCb8jnstHqxqHzeBQ2v+wYZn48BgwMnNSNsHHsUnPMrm+KqjJsY3+jejQ9wENk59BHsnF9x9 A+n13Hzs7O3pMmYyB9csYv+KeXiHRNKq7zBS9mwt10fbBx5l+5sTWfXHvgTE3Mqdf37NXLZ15hMY DODW9CZuG/ucxXtSbem/uvE5OTkRGhpKZGSkzcdEREREGi+DyWQyVaeD7Ozs65bXxGuqvpgYy60j niKwTedq9yUiIiIiDd9v6LOo1cqlRUREROQ35DeUpIqIiIhIY/GbuN0vIiIiIo1Lpd6TWhWvX/1y 0QpMql6OLCIiIiI3IN3uFxEREZEGR0mqiIiIiDQ4v6kk1WQqq+8QatWBAwcIDAwkPj6+XsYvK7ux j6+IiIj8dtiUpKakpLBs2TLefPNN5syZw3fffVfbcZVz6eR/+Wr6Y3U+bk0IDw8nICCAoKAgunbt ymeffVZhvcDAQIYOHUrz5s3rOEI4ePAg/fr1q/NxRURERCpi04NTSUlJ9OrVi+bNm5Oens67775L UFAQYWFhtRzeLwqyKv5u/G/Fhg0b6NChA7t27SI2Npa8vDxiY2Mt6vj7+zNv3rx6iS89Pb1exhUR ERGpiE0zqXfddZd5ds/X15fg4GDy8/NrNbCfFWRmsO6poXz71rOc/89+1ozrz5px/dk8bSwAl08l svqPfS2WAhTlZvPxqB6UFhcCV75YdWLHer587g98PKoHX898gsKrvj1fVlrKvz9eyCdPDOCTP93H rvkvUJyfaxFHSUkJ7du3Z+TIkVXeF4PBQPfu3XnjjTd44YUXzNt79+5NeHg44eHhODg4cOTIEYt2 qampdOzYkQsXLjB8+HACAgLo3bu3RWzTpk2jVatWtGzZklGjRpV7NdiKFSto3749zZo149Zbb2Xd unUAnD9/nrZt2xIXF8fOnTvNcVzdf2ZmJmPGjCEkJISIiAheeeUV8+dxrcV35MgRQkJCLJYSXL58 mYCAAAoKCqp8LEVEROTGZvOaVJPJRE5ODvHx8eTn59fZN9hdvHwYOGcNXcZOwT+6PUMXbmTowo30 nbYYAO/gCIwBzUndv8vc5uSeLQR37IG9o7N5W+K2dfR4ejYPLvoKOwdHfvxgjrnswMqFnDv6I/fN +pj7536Ok5uRfcvftoijoKCAxMREjh49Wu196t+/PwkJCWRlZQGwZcsWkpKSSEpKws/Pr8I2Z8+e JS4ujsGDB3PixAmWLVtmLnvppZfYsWMHe/fu5fjx43h5eTFlyhRz+cqVK5k8eTJLly4lNTWV5cuX k5eXB1yZvT148CDz5s2je/fu5ji2bNlibj927FgMBgOJiYnEx8ezfv16/v73v9sUX+vWrWnRogUb N2401127di0DBgzAxcWlmkdSREREblQ2J6nHjh1j4cKFfPPNNwwcOBAHh1p/xarNovo/zE9frTH/ nrRjAy3uus+izi33j8K1iR92Do5E3D2I1H07zWXHNnxEh7gncXRxA4OBNkPHcip+m0V7o9FIcnIy 27dvr3a8np6euLi4cPbsWZvbpKamMmXKFB544AHc3d1p1qyZuWzu3Lm8+uqrGI1GDAYDU6ZMMc+U AsyZM4eZM2fSrl07AKKionj44YdtGvfy5cusXbuW2bNn4+joiI+PD9OnT2fx4sU2xzd+/HiL+h99 9BEjRoywed9FRESk8bE504yOjiY6OpqMjAxWr17N7bffzi233FKbsdkspEtPflz2BvmXLoDBQPa5 09wUc+s163sHR1CYkwlAYdYlivJz2TXveYs6zh6e5dr5+PjUSLyZmZkUFBQQFBRkcxuj0UiPHj3K bU9PTycrK6vcMoSrY/3pp59o3bp1lWJNSkrC19cXLy8v87abb76ZpKQkm+IDGDx4ME8//TRpaWkY DAZOnDjBnXfeWaV4REREpHGo9HSoj48P7dq14z//+U+dJqn2jk4UZlf88JSdvQM39xxM4rbPcXBx JfyOe+A6X7rKTkvB6H9lps/ZwxtHFzf6vPAO7r6B140hMzMTV1dXnJycqr4jwPr162nVqhVGo7Fa /QA0bdoUo9HIpk2bCAkJqbBOWFgYx48fp23bttfsx8XFhYsXL5bbHhoaSnp6OtnZ2eZP3J44caJS D805OjoycuRI/vnPf+Lu7k5sbCwGK18iExERkcbN6u3+/Px8Vq1aZU5gLl26xJEjRyxu59YF7+AI LqckkJueBkDBVQ8+AbTs8wCJ2z8n+bvNRNw1oFz75O82U1pcSFFeDgdWvkNkr/uvFBgMtOr7IN8v mkFRXs6VvjMzyEg6ZtE+NzeXsLCwa84W2mrXrl1MnDiR6dOnV6ufnxkMBh577DEef/xxMjOvzA6f P3+e/fv3m+uMGzeOKVOmcOzYlX06efIks2bNsugnJiaGw4cPk5KSAsCFCxeAK3+UDBo0iIkTJ1Ja WkpmZiYvvvgio0ePrlScjz76KB988AGrVq3SrX4RERGxyupMqqurK61ateKzzz7j8uXLmEwm2rVr x2233VYX8ZkZ/ZvRIW4CG6c+gr2TC+6+gfR6bj529vYAuPn44dW8BTnnz+DVLLxcewdnF9ZP/B2F OZcJv+NeYgb8kii1j5vAoTX/YMOzcWAw4ORmpO0Dj+ITHmWu4+TkRGhoaJUfGBswYAAGg4Hg4GDm z5/PoEGDqtRPRWbMmMHMmTO57bbbMBgMeHl5MXXqVNq3bw/A6NGjKSkpYciQIeTm5uLn58fkyZMt +ggPD+fVV1/lzjvvxNXVlZCQENavX4+DgwNLlizhqaeeokWLFjg4OPD73/+ev/zlL5WKMSgoiOjo aJKTk4mKirLeQERERBo1g8lkMlWng1+/6ujXFniWX9t5tUnVG97C9+++gnfIzUTdY/lQ0BcTY7l1 xFMEtulcY2NJ5Y0bN45bbrmF8ePH13coIiIi0sD9pj6Lej1nj8Rz9kg8LfsMvUaNmkuGpfK2bdvG tm3bGDt2bH2HIiIiIr8BDec9UlVUUljApxMG4ujqTrfx07FzcKzvkOQqeXl5REVF4enpyXvvvVft h85ERESkcbihbveLiIiIyI3hhrndLyIiIiI3DiWpIiIiItLgKEkVERERkQanUSWpJlNZldp9MTGW tEN7ajiaG8+BAwcIDAwkPj6+XsYvK6v8+c3LyyM8PJzw8HCcnZ3ZunVrLUR2RVXiu9rOnTvZu3dv DUUjIiLSsFU6SV2xYgWLFi2qjVhq1aWT/+Wr6Y/VdxjXdfvtt/PXv/613PbJkyfj6uqKn5+f+d/g wYPrIcLrCwwMZOjQoTRv3rzOxz548CD9+vWrdDs3NzeSkpJISkq65mdjw8PDCQgIICgoiK5du/LZ Z5/VWXxXO3DggPmrYSIiIje6Sr2C6sCBAxQXF9dWLLWqIOtyfYdwXUeOHMHPz4+vv/6aoqKicq9q euyxx5gzZ049RWcbf39/5s2bVy9jp6en12r/GzZsoEOHDuzatYvY2Fjy8vKIjY21uX114issLOS5 555jxYoVlJaWsnnzZt566y2aNGlS5T5FREQaOptnUrOysvj222/p1q1bbcZTztkjP/L1zCfYPG0M a8ffy+kft7Nm3D189fIvs6KXTyXy7d8n8+mEQawcfTe75j1PaXEhAAWZGax7aijfvvUs5/+znzXj +rNmXH82T7N8qXzSzi/5/OkHWTW2F1888xCn4rdZlBfn5bD9jaf51yN38sXEWLLPnrIoLykpoX37 9owcObJK+7l48WIeeeQR7rnnHj755JNKtX3wwQd58cUXLX6fPXu2+fdOnTqxfPlyunfvTkBAAAMH DrRImkpKSpg2bRqtWrWiZcuWjBo1yuLVYqmpqXTs2JELFy4wfPhwAgIC6N27t7m8d+/e5lvmDg4O HDlyxFy2fft2Bg4cSK9evbj55pv54osvaNGiBf3797d5/E6dOrFv3z6GDRuGr68vnTp1IjExEYDz 58/Ttm1b4uLi2LlzpzmOq+M7cuQIw4cPJzo6mptuuomRI0dSUFBQqWMMYDAY6N69O2+88QYvvPCC Tf3XRHxLlixhz549/PTTT5w+fZpu3bqRn59f6fhFRER+S2xOUj///HN69uyJs7NzbcZToTMHdtN5 9GR8I9tw6JP3uO/1j0hPOExu+lkAstNSCOvWn4Fz1jBkwZdcPp3IfzevBsDFy4eBc9bQZewU/KPb M3ThRoYu3EjfaYvN/Sd/t4l9H75Ft/Ev8+Dirdzx59coKbRMYv798UJuuX80989dh6t3Uw6tXWJR XlBQQGJiIkePHq30/hUWFvLll19y77338vvf/57Fixdbb3SV+fPns3jxYg4dOsTGjRtJSkriqaee sqizbNkyVq1axalTp3BycmLixInmspdeeokdO3awd+9ejh8/jpeXF1OmTLFof/bsWeLi4hg8eDAn Tpxg2bJl5rItW7aYb5n7+fmVi2/z5s28/fbbdOnShddee40ffviBH374gVOnTtk8/tixY3n22Wc5 fvw4AQEBzJw5E7gye3vw4EHmzZtH9+7dzXFs2bLF3DYhIYGHHnqIgwcPcuLECY4ePcq7775bqWN8 tf79+5OQkEBWVpbV/msqPoPBgMlkwsHBgUcffZSgoKAqxy8iIvJbYNPt/v379+Po6EhMTAynT5+u 7ZjK8WoejndwBJ6BoXgHR+Ds2QR330Cyz53G3fcmgjvfDUBxfi5ZZ5LxDAzlwk+HiLax/6Off0CH 4X/GJzzqynjNwvFqFm5R59YRT9G0xZUew27vx3+/Wm1RbjQaSU5Oxs3NrdL7t2bNGvr374+TkxNR UVHk5OSQmJhIRESEuc7ChQt5//33zb8fOXLEnKj4+/vz5ptvMnbsWLKzs/noo4+wt7e3GGPSpEkE BgYC8Ic//IFHH33UXDZ37lw2btyI0WgEYMqUKXTs2JG5c+ea66SmpvLhhx/So0cPANzd3W3ev+jo aFq3bk1kZCQxMTH4+voSEhLCiRMnCA4Otmn8GTNm0KFDBwCGDRtWqXXRgwYNAq58eOL48eNERkby ww8/2Nz+1zw9PXFxceHs2bN4enpWu39r7ceMGcO///1vwsLCGDt2LJMmTcLLy6vK8YuIiPwWWE1S MzMz2bFjB6NHj66LeK7LYKj457yM8/yw5DWK8/NoenMMBjt7SvJybO43Ky0F7+CI69axc/jlULl6 N6W0uKhcHR8fH5vHvNqwYcN46KGHzL/v3LkTOzvLSe5x48Zdd03qkCFDmDBhArfddhv/93//d93x WrduTUZGBnBlrWRWVla5ZQq/3hej0WhOUKvKcNVJ+/lnW8d3dPzlc7cBAQEUFhbaPG5qaioTJkwg JyeHjh074uDgQGZmZlV2Abjy30RBQYH5j4Tq9m+tvZOTE4sWLeLPf/4zr7/+Oq1atWLTpk1Wz7OI iMhvmdUk9fjx4xgMBt577z3gyvrB3Nxc3n77bcaOHWuldd3Y8eZEou+NI7RrHwASt60jZc/XFnXs HZ0ozK744SmjfxCZqck0CW1ZrTgyMzNxdXWt9PfpHRwcrvu7LV5++WWGDBnC1q1b+fbbb7njjjuu WTchIYHw8CszxU2bNsVoNLJp0yZCQkIqPW511dT4Li4uXLx4scKy2NhYJkyYwAMPPABcWfrw6aef lqtnZ2dHSUmJ1bHWr19Pq1atzDO/tvRfE/HFxMSwbNkynn76ad59910WLFhgNVYREZHfKqtrUjt3 7syECRPM/4YNG0ZAQAATJkzA1dW1LmK0KudCGob/zTxmpZ3k+OZV5ep4B0dwOSWB3PQ0AAqyLpnL WvUbxr7lb5OZmvS//s5w+LP3KxVDbm4uYWFh1Z5trIr9+/ezfPlyZs2axaJFixg5ciQ5OZYzyatW raKgoIDMzExeeuklRo0aBVyZ0Xzsscd4/PHHzbN358+fZ//+/XUSe02NHxMTw+HDh0lJSQHgwoUL 5rKTJ0+alz/89NNP11yPGhoaypdffonJZDLPNP/arl27mDhxItOnT69U/9WJb8KECbzzzjucOXOG EydO8MMPP9CyZfX+oBIREWnoboiX+XcZM5lDnyzhsz/fz/4V82nVd1i5Okb/ZnSIm8DGqY/w6YRB fPvWZMpKSwGI7DWEWwb9gW/+9hSr/9iPbbP+gkdA5d716eTkRGhoKJGRkTWyT7/2zjvvWLwn9ef1 mcXFxTzyyCPMnTsXDw8P7r77bu67775yD065ubnRuXNnYmJiuP322y3KZ8yYQefOnbntttuIiYlh 0KBBnDlzplb2oyI1MX54eDivvvoqd955J9HR0QwfPtw8Kzp37lxee+01brnlFp5//nkee6zi9+VO nTqVzZs3ExISwhNPPGFRNmDAAJo1a8Zf//pX5s+fz7Bhv1xjtvRfnfiefPJJ9u/fT5cuXRg0aBAj RowoF5+IiMiNxmAymUzV6eDqVwVVZIGn53XLJ1VveLFBp06deP311+nZs2d9hyLVMH/+fLy9vYmL i6vvUERERGpd5Rc/ym9SNf8WkQYgMDDQvA5WRETkRqckVeQ3YsiQIfUdgoiISJ1RktoIxMfH13cI IiIiIpXS4JNUa2tePTw86igSEREREakrN8TT/SIiIiJyY1GSKiIiIiINjpJUEREREWlwbFqTeuDA AdatW2fx/fQBAwbQunXrWgtMRERERBovm5LUgoICOnbsyD333FPb8YiIiIiI2Ha7Pz8/H3d399qO RUREREQEqMRManp6OitWrKCsrIzo6Gjzt+NFRERERGqaTUlq69atyc/PJywsjIsXL7Jq1SoMBgPt 27ev7fhEREREpBGy6XZ/cHAwLVu2xMnJicDAQLp168axY8dqOzYRERERaaSq9Aoqg8GAnZ3eXiUi IiIitcNqppmbm8vq1au5dOkSAJcvX2bXrl1ER0fXenAiIiIi0jhZXZPq7u7OzTffzNq1a8nOzsbO zo4uXbrQtm3buohPRERERBohmx6cateuHe3atavtWEREREREAH0WVUREREQaICWpIiIiItLgKEkV ERERkQZHSaqIiIiINDhKUkVERESkwVGSKiIiIiINjpJUEREREWlwbHpPKkBCQgJbt24lOzsbLy8v evbsSURERG3GJiIiIiKNlE1J6pkzZ1i/fj0PP/wwAQEBXLx4kcLCwtqOTUREREQaKZuS1B07dtCz Z08CAgIAaNq0aa0GJSIiIiKNm01J6rlz5+jWrRvr16/nwoULBAcHc8cdd+Dk5FTb8YmIiIhII2TT g1PZ2dl8/fXXdOjQgYceeoiLFy+ydevW2o5NRERERBopm5JUd3d3Bg0aRGBgIK6urnTp0oWEhITa jk1EREREGimbklQ/Pz/S09PNvxuNxloLSERERETEpiS1S5cufPPNNxQUFGAymfjuu+9o2bJlbccm IiIiIo2UTQ9ORUZGkpWVxXvvvUdpaSlhYWH07NmztmMTERERkUbK5pf533rrrdx66621GYuIiIiI CKDPooqIiIhIA6QkVUREREQaHCWpIiIiItLg2Lwmtb54eHjUdwgiIiIiUsc0kyoiIiIiDY6SVBER ERFpcBpFkvrFxFjSDu2xWs9kKquDaERERETEGqtrUnNzc5k7d67FttLSUoxGI08++WStBVbXLp38 L/Hvz6bvi4vqOxQRERGRRs9qkuru7s6zzz5rse3jjz+mTZs2tRZUfSjIulzfIYiIiIjI/1T66f4j R47g4OBATExMbcRTobyM83y3cBqZpxKxc3SiaYsY2v/uCTwCmgOwbGhbHn5/B84e3gDsXzGPkoI8 Oo2caO7j4on/8O+PF5B15iR+LdvS7fGXcPZsQkFmBpunjaUg6xJFudmsGdcfAI+AYPpOW2we/+vX JtB76kLil/6NMwd20yQk0lxeVlrKwdWLSNq5AUwm/KM70HnUJBxd3W0qBygpKaFTp060a9eOpUuX 1v5BFREREWnAKpWkmkwmtm3bxrBhw2orngodWPkORv9m9J4yH4BT8dssEjxbpB3YTY+/zsbZw5sd cybx4wdv0W38S7h4+TBwzhpOfr+F45tWXvN2f/6ldL5961la9nmArn98gaK87KviW8j5Y/u5b9bH ODq7Ev/+LPYtf5suYybbVA5QUFBAYmIiTk5OlT08IiIiIjecSj04lZiYiIeHB35+frUVT4XcmgZw 7uhezh7dS1lZKcGd78bFs0ml+rjl/lG4NvHDzsGRiLsHkbrv20q1z8s4T5uhYwjt2gcHF1fcfPzN Zcc2fESHuCdxdHEDg4E2Q8dyKn6bzeUARqOR5ORktm/fXqm4RERERG6N0Mk7AAAgAElEQVRElZpJ TUhIIDw8vLZiuaa2Q8fgbPRi34dvkXkmmeCOd9Eh7kmLRLEyvIMjKMzJrFQbBxc3bmrdqdz2wqxL FOXnsmve8xbbnT08bSq/mo+PT6ViEhEREblRVSpJTUlJoXfv3rUVyzUZ7OyJuudhou55mMKcTPYs fpXd775Mr8lX3jpg5+BIQdYl85rUspLi6/aXffaUeT3rz+wdnSjMrvzDU84e3ji6uNHnhXdw9w2s dPnVMjMzcXV11S1/ERERafQqdbv/0qVL9fKZ0n0fvc3lU4kAOLt74tW8BZhM5nLPoFASt31OaXEh p3/czokdX5Tr4+TurygtLqQ4L4cDK9/h5p6DLcq9gyO4nJJAbnoaAAVZl2wLzmCgVd8H+X7RDIry cq60zcwgI+mYbeX/k5ubS1hYGD169LBtXBEREZEbmM0zqaWlpeTn5+Pm5lab8VTI7+Y2xC/9GzkX 0jCVleEZFMJtY6eayzuPnMh3C6eRuG0doV370CHuyXJJoDGgOesnxVGYfYnw7v+PmAEjLMv9m9Eh bgIbpz6CvZML7r6B9HpuPnb29lbjax83gUNr/sGGZ+PAYMDJzUjbBx7FJzzKpnIAJycnQkNDiYyM rM6hEhEREbkhGEymq6YkqyA7O/u65Qs8y6+9vNqk6g0vIiIiIjegRvFZVBERERH5bVGSKiIiIiIN jpJUEREREWlwKv1Z1Lpmbc1rfbxtQERERERql2ZSRURERKTBUZIqIiIiIg2OklQRERERaXBsWpNa WlrKhg0bSEpKwmQyERUVRd++fTEYDLUdn4iIiIg0QjbNpMbHx5OTk8P48eMZN24caWlpHDlypLZj ExEREZFGyqaZ1Pz8fEJCQrC3t8fe3p6IiAirT92LiIiIiFSVTTOpbdu2Ze/evfz73/8mNzeXhIQE YmJiajs2EREREWmkbJpJ9fLyIjAwkH379vH555/TpUsXvLy8ajs2EREREWmkbEpSly9fTpcuXYiK iiIjI4MvvviC3bt307Vr19qOT0REREQaIau3+/Pz8zl37hxRUVEA+Pj40KdPHw4dOlTrwYmIiIhI 42Q1SXVxccHJyYnjx49jMpkoKysjISFBt/tFREREpNZYvd1vMBiIjY1l8+bNbN68GZPJRFBQEPfe e29dxCciIiIijZBNa1IDAgIYMWJEbcciIiIiIgLos6giIiIi0gApSRURERGRBkdJqoiIiIg0OEpS RURERKTBUZIqIiIiIg2OklQRERERaXCUpNagjOTjrBzdk/SEw7XSv8lUViP9HFyzmD3/mFlue23H LyIiImIrm96TmpWVxRdffMGFCxdwdXWlX79+hIaG1nZsvzluTfwI7dob96YBNd73pZP/Jf792fR9 cVGN9/2z2oxfREREpDJsmkldu3YtkZGRPPnkkwwZMoQ1a9aQnZ1d27H95rh4+dBlzBRcm/jVeN8F WZdrvM9fq834RURERCrD6kxqQUEBaWlp/OEPfwDA19eXDh068OOPP3L33XfXeoA14YuJscTcN5zj m1aSlXYSv8g2dBs/HWfPJgDkZZzn69cm0HvqQuKX/o0zB3bTJCSSvtMWA1CUl8OP78/mzIHvsLN3 4Oaeg2kzZDQGO3sANk8bS/a5UwDkpp9l4Jtr8A6OMI9fVlrKwdWLSNq5AUwm/KM70HnUJBxd3c11 knZ+yeFP36MgMwNXb1/+b9g4gjv1oCAzg83TxlKQdYmi3GzWjOsPgEdAsDk+awpzMvl+0QzOHv4B j4DmGAOa42z0Mpdbi9/a8QEoKSmhU6dOtGvXjqVLl9p+ckREREQqYNPt/uLiYoqKinB2dgbA39+f w4d/W+sWE7eto8fTs3H28GbHnEn8+MEcuo2fbi7Pv5TOt289S8s+D9D1jy9QlPfLTPHuhdNwdDMy ZMEGivNz2TpjPPbOLrQe8HsAi2Rt5eie5cY+sHIh54/t575ZH+Po7Er8+7PYt/xtuoyZDEDyd5vY 9+Fb3D3p7/iER5GZmkRG0nHgyuzmwDlrOPn9Fo5vWlml2/27F76EvZMLD7y7meL8XLbN/qtFkmot fmvHB678MZOYmIiTk1Ol4xMRERH5Nau3+11cXAgMDGTPnj0UFhaSmJjI1q1bycnJqYv4aswt94/C tYkfdg6ORNw9iNR9Oy3K8zLO02boGEK79sHBxRU3H38AinKzOfn9Fjr+4Wns7B1wNnrR7uHx/PTV GpvHPrbhIzrEPYmjixsYDLQZOpZT8dvM5Uc//4AOw/+MT3gUAF7Nwgnv3r/6Ow0U5WSRsudruox+ FntHJ1w8mxD0f10r3c+1js/PjEYjycnJbN++vUbiFhERkcbNppnUBx98kG+++YaPPvqI5s2bc8cd d5CQkFDbsdUa7+AICnMyLbY5uLhxU+tO5ermnE/FxbMJTm5G8zbPwBByzqfaNFZh1iWK8nPZNe95 i+3OHp7mn7PSUixur9ek7POpuHg1wcnoab3ydVzr+FzNx8enWmOIiIiI/MymJNXb25v777/f/Pum TZsICPjtPgGenZaC0b+ZTXXd/QIpyLpEcX6ueQ1p9rnTuPsF2dTe2cMbRxc3+rzwDu6+gRXWMfoH kZmaTJPQltfsx97RicLsyj885erlQ2F2JqXFhdg7Ole6fWVkZmbi6uqqW/4iIiJSbTY93Z+cnExh YSEAJ06c4PDhw3Ts2LFWA6tpyd9tprS4kKK8HA6sfIfIXvdbbwQ4G70I6dyTvf+cg6mslKK8HP79 rwVE9h5i28AGA636Psj3i2ZQlHdliURBZgYZScfMVVr1G8a+5W+TmZoEQM6FMxz+7H2LbryDI7ic kkBuetqVPrIu2TS8W9MAmoS15OCqRWAykX02haQdG2yLvRJyc3MJCwujR48eNd63iIiIND42zaSe O3eO9evXU1RUhI+PDyNGjMDV1bW2Y6tRDs4urJ/4OwpzLhN+x73EDBhhc9vbH3+J+KV/Y824/4ed vT0RPQbQuhLt28dN4NCaf7Dh2TgwGHByM9L2gUfNa1Ajew3BVFrKN397ipKCfFy8mtBmyBiLPoz+ zegQN4GNUx/B3skFd99Aej03Hzt7e6vj3/nU63w3/0VWPdobn7AoWvS4j7yL522O3xZOTk6EhoYS GRlZo/2KiIhI42QwmUym6nRg7X2pCzyvvxZykpXhrfXv4eFx3XK48gqqW0c8RWCbzlbrVkdZaSkr RnRl0Fuf2LycQERERETKs2km9cZQrVz8unLOn8HoH8TZwz/g4OyKWx1+senCfw+y5ZVxFZY9/P4O 87tcRURERH5LGlGSWjvyLp7j27cnk59xAXtnF+54ciZ29nV3WP1atiX2n7vqbDwRERGRutAobveL iIiIyG/LDT+TqiRXRERE5LfHpldQiYiIiIjUJSWpIiIiItLgKEmtBJOprL5DqFUHDhwgMDCQ+Pj4 ehm/rOzGPr4iIiJiOzu48rWgr7/+mgULFvDhhx+Wq1RWVsamTZt4++23mT9/Pnv37q3zQOvbpZP/ 5avpj9V3GFUSHh5OQEAAQUFBdO3alc8++6zCeoGBgQwdOpTmzZvXcYRw8OBB+vXrV+fjioiISMPk AGBnZ0dQUBBFRUWkp6eXq/Tdd9+RlZXFn/70JwoLC3n//ffx8fEhPDy8zgOuLwVZl+s7hGrZsGED HTp0YNeuXcTGxpKXl0dsbKxFHX9/f+bNm1cv8VV03YmIiEjjZQfg6upKVFQUQUFBFVbat28fPXr0 wM7ODldXV26//Xb27dtXp4HWl4LMDNY9NZRv33qW8//Zz5px/Vkzrj+bp40F4PKpRFb/sa/FUoCi 3Gw+HtWD0uJC4MoXr07sWM+Xz/2Bj0f14OuZT1CYdclcv6y0lH9/vJBPnhjAJ3+6j13zX6A4P9ci jpKSEtq3b8/IkSOrvC8Gg4Hu3bvzxhtv8MILL5i39+7dm/DwcMLDw3FwcODIkSMW7VJTU+nYsSMX Llxg+PDhBAQE0Lt3b4vYpk2bRqtWrWjZsiWjRo0q91aFFStW0L59e5o1a8att97KunXrADh//jxt 27YlLi6OnTt3muO4uv/MzEzGjBlDSEgIERERvPLKK5SWltoU35EjRwgJCbFYSnD58mUCAgIoKCio 8rEUERGR2mV1TWpZWRlZWVn4+vqya9cujh07hr+/PxkZGXURX71z8fJh4Jw1dBk7Bf/o9gxduJGh CzfSd9piALyDIzAGNCd1/y8v1D+5ZwvBHXtg7+hs3pa4bR09np7Ng4u+ws7BkR8/mGMuO7ByIeeO /sh9sz7m/rmf4+RmZN/yty3iKCgoIDExkaNHj1Z7n/r3709CQgJZWVkAbNmyhaSkJJKSkvDz86uw zdmzZ4mLi2Pw4MGcOHGCZcuWmcteeuklduzYwd69ezl+/DheXl5MmTLFXL5y5UomT57M0qVLSU1N Zfny5eTl5QFXZm8PHjzIvHnz6N69uzmOLVu2mNuPHTsWg8FAYmIi8fHxrF+/nr///e82xde6dWta tGjBxo0bzXXXrl3LgAEDcHFxqeaRFBERkdpiNUktKSnBzs4Og8FAcnIyaWlpODo6UlhYWBfx/SZE 9X+Yn75aY/49accGWtx1n0WdW+4fhWsTP+wcHIm4exCp+3aay45t+IgOcU/i6OIGBgNtho7lVPw2 i/ZGo5Hk5GS2b99e7Xg9PT1xcXHh7NmzNrdJTU1lypQpPPDAA7i7u9OsWTNz2dy5c3n11VcxGo0Y DAamTJlinikFmDNnDjNnzqRdu3YAREVF8fDDD9s07uXLl1m7di2zZ8/G0dERHx8fpk+fzuLFi22O b/z48Rb1P/roI0aMGGHzvouIiEjds/oyfycnJ+BKshoXFwdASkqKXoJ/lZAuPflx2RvkX7oABgPZ 505zU8yt16zvHRxBYU4mAIVZlyjKz2XXvOct6jh7lP9Sl4+PT43Em5mZSUFBwTWXd1TEaDTSo0eP ctvT09PJysoqtwzh6lh/+uknWrduXaVYk5KS8PX1xcvLy7zt5ptvJikpyab4AAYPHszTTz9NWloa BoOBEydOcOedd1YpHhEREakbNn1xyt/fn9TUVEJDQwE4ffo0/v7+tRpYQ2Pv6ERhdsUPT9nZO3Bz z8EkbvscBxdXwu+4BwyGa/aVnZaC0f/KTJ+zhzeOLm70eeEd3H0DrxtDZmYmrq6u5j8cqmr9+vW0 atUKo9FYrX4AmjZtitFoZNOmTYSEhFRYJywsjOPHj9O2bdtr9uPi4sLFixfLbQ8NDSU9PZ3s7Gzz H0YnTpwgLCzM5hgdHR0ZOXIk//znP3F3dyc2NhbDdc6PiIiI1D+b3pPasWNHtm/fTmlpKTk5OcTH x9OhQ4fajq1B8Q6O4HJKArnpaQAUXPXgE0DLPg+QuP1zkr/bTMRdA8q1T/5uM6XFhRTl5XBg5TtE 9rr/SoHBQKu+D/L9ohkU5eVc6Tszg4ykYxbtc3NzCQsLu+Zsoa127drFxIkTmT59erX6+ZnBYOCx xx7j8ccfJzPzyuzw+fPn2b9/v7nOuHHjmDJlCseOXdmnkydPMmvWLIt+YmJiOHz4MCkpKQBcuHAB uDIjO2jQICZOnEhpaSmZmZm8+OKLjB49ulJxPvroo3zwwQesWrVKt/pFRER+AxwAVq9ezenTpykq KqKoqIi33noLT09PRo0aBUC7du24fPkyCxcuxM7Ojt69exMQEFCvgdc1o38zOsRNYOPUR7B3csHd N5Bez83Hzt4eADcfP7yatyDn/Bm8mpV/NZeDswvrJ/6OwpzLhN9xLzEDfkmU2sdN4NCaf7Dh2Tgw GHByM9L2gUfxCY8y13FyciI0NJTIyMgqxT9gwAAMBgPBwcHMnz+fQYMGVamfisyYMYOZM2dy2223 YTAY8PLyYurUqbRv3x6A0aNHU1JSwpAhQ8jNzcXPz4/Jkydb9BEeHs6rr77KnXfeiaurKyEhIaxf vx4HBweWLFnCU089RYsWLXBwcOD3v/89f/nLXyoVY1BQENHR0SQnJxMVFWW9gYiIiNQrg8lkMlWn g1+/aujXFniWX1t5tUlWhrfWv7W1sdVtXxnfv/sK3iE3E3WP5UNBX0yM5dYRTxHYpnONjSWVN27c OG655RbGjx9f36GIiIiIFfosag05eySes0fiadln6DVqVOtvAammbdu2sW3bNsaOHVvfoYiIiIgN bHpwSq6tpLCATycMxNHVnW7jp2Pn4FjfIclV8vLyiIqKwtPTk/fee6/aD52JiIhI3dDtfr1KS0RE RKTB0e1+EREREWlwlKSKiIiISIOjJFVEREREGhwlqXXIZCqrUrsvJsaSdmhPDUdTseLiYiZOnEhe Xl6djFeRGTNm8MQTT1S6XVlZ1Y5vfTt27BhvvvlmjfRVn+fvwIEDBAYGEh8ff916VT2/1lg7/9bi S0lJoU+fPtx00020a9eOTZs2Vap9Q1WT15eISF2ygytfM/r6669ZsGABH374YblK1srFuksn/8tX 0x+r7zCsGj58OE2bNsXNzc287dy5c8TGxhIaGkpwcDCLFi2yaHP//ffj6+tLWFgYoaGh9O3bl8OH D9dp3AcPHqRfv351OqatrB2/m2++md27dzNnzpxqj1Wf5y8wMJChQ4fSvHnzau9HZdly/q3F98wz z9CqVSuSk5PZvXs3d9xxR6XaN1Q1eX2JiNQlOwA7OzuCgoJo0aJFxZWslIt1BVmX6zsEq/71r39R UFDApEmTLLafOXOGBx54gOTkZD7//HP+9Kc/cebMGYs6r7/+OsnJySQnJzNo0CBiY2OvOc7SpUtZ sWJFjcaenp5e5bYzZsxg27ZtNRfMr1g7fg4ODixbtoxFixaZPx1bFfV9/vz9/Zk3bx6BgYFV3oeq suX8W4vv4MGDDB8+HBcXF1xdXS0SfVvaV1VtX381dX2JiNQ1OwBXV1eioqIICgqqsJK18hvZ2SM/ 8vXMJ9g8bQxrx9/L6R+3s2bcPXz18i+zopdPJfLt3yfz6YRBrBx9N7vmPU9pcSEABZkZrHtqKN++ 9Szn/7OfNeP6s2ZcfzZPs3ypfNLOL/n86QdZNbYXXzzzEKfit1mUF+flsP2Np/nXI3fyxcRYss+e sigvKSmhffv2jBw5ssr7+sYbbzBz5sxy29u3b8/QoUMxGAy0bNkSDw+Pa75v1GAwMHToUI4dO1bu 9mtaWhr33XcfW7dupX///ubtGRkZPPzwwwQEBNC1a1eOHj1q0e7IkSMMHz6c6OhobrrpJkaOHElB QQEA58+fp23btsTFxbFz507Cw8MJDw+nd+/eFsdm2rRptGrVipYtWzJq1CiLV5MNGzaM559/nqee eor8/PzKH7j/efPNN9m9e3e57bYcPzc3N5555hnmzZtX5fHr6/z17t3bfNwdHBw4cuSIRTtr59fa +enUqRP79u1j2LBh+Pr60qlTJxITEwHbzr+1+J555hmioqJISEhg6NChlW5vLf7U1FQ6duzIhQsX GD58OAEBARb91/b1BzVzfYmI1DWtSbXBmQO76Tx6Mr6RbTj0yXvc9/pHpCccJjf9LADZaSmEdevP wDlrGLLgSy6fTuS/m1cD4OLlw8A5a+gydgr+0e0ZunAjQxdupO+0xeb+k7/bxL4P36Lb+Jd5cPFW 7vjza5QUFljE8O+PF3LL/aO5f+46XL2bcmjtEovygoICEhMTyyUANu/jmTNkZWURExNzzTplZWWM Hj2aJ554Al9f32vWee+99+jcuTN2dr9cXv/617/o1asXY8aM4cMPP6RJkybmsrFjx+Lo6EhKSgrr 1q0jNTXVos+EhAQeeughDh48yIkTJzh69CjvvvsucGV26+DBg8ybN4/u3buTlJREUlISW7ZsMbd/ 6aWX2LFjB3v37uX48eN4eXkxZcoUc3lkZCTbt28nKCiIrl27smdP5db//jwrmZubS3Z2NmVlZZw7 d67Sx2/w4MF8+umnlRr76hjq6/xt2bLFfNz9/PzK9Wnt/Fo7Pz/38eyzz3L8+HECAgLMybgt599a fLNmzeLYsWOEhYWxYcOGSre3Jf6zZ88SFxfH4MGDOXHiBMuWLTOX1dX1V53rS0SkPihJtYFX83C8 gyPwDAylWYfuOHs2wd03kOxzpwEI7nw3wR3vorSokMzTiXgGhnLhp0M293/08w/oMPzP+IRHXRmv WTjh3ftb1Ll1xFM0bRGNs4c3Ybf3IzM1yaLcaDSSnJzM9u3bq7SPycnJREREXLfO9OnT8fT0ZNq0 aeXKJk2aRFhYGOHh4fz444989NFH5rIlS5Ywe/ZsduzYweDBgy3aXbp0iU8//ZS3334bZ2dn/Pz8 6NOnj0WdQYMGMWDAAAoKCjh69CiRkZH88MMPNu/b3LlzefXVVzEajRgMBqZMmcK6dess6tjZ2fHM M8+wfPlyBg4cyMGDB23uf+nSpXTt2pW1a9fy6quvcuedd/Ltt9+Wq3e94wfg4+NDXl4eRUVFNo/9 s/o6f9bYcn5tOT8zZsygQ4cONG3alGHDhjWo29a2xJ+amsqUKVN44IEHcHd3p1mzZhbldXH9Vef6 EhGpD/osaiUYDBX/nJdxnh+WvEZxfh5Nb47BYGdPSV6Ozf1mpaXgHXz9BMPO4ZdT5erdlNLi8v+j 8fHxsXnMXysqKsLR8fqfdD1y5Agvv/xyhWWvv/46o0ePrrCsT58+LF++nKlTpzJ79myMRqO57OfZ qatn5n4tNTWVCRMmkJOTQ8eOHXFwcCAzM9OGvbqyVjErK6vcMoiKjlVKSgpPPvkkAwcOtJrwXe25 557jkUceoUOHDhQXF3PgwAHs7e3L1bve8fuZg4MDRUVFlf58a32dP2usnV9bz8/V+xYQEEBhYaHN MdQmW+M3Go306NHjun3V9vUHVb++RETqg2ZSa8CONycS3v0e+rzwDh1+N4HANp3L1bF3dKIwu+KH p4z+QWSmJlc7jszMzCrPkjRv3pxTp05dt86qVauIioqqdN8hISFs3bqVmJgYunTpwjfffGMu8/f3 JyMjw7zGtCKxsbHExsayadMmZsyYwd13312ujouLCxcvXiy3vWnTphiNRjZt2sR//vMf87/9+/db 1FuyZAn9+vXjr3/9K4sXL8bd3b1cX9c7vlOnTmXx4sUMGjSIJUuWVFjH2vErKCigrKysUkngz+rr /Flj7fzaen6sudb5r201FX9dXH/Vub5EROqDktQakHMhDcP/1u9lpZ3k+OZV5ep4B0dwOSWB3PQ0 AAqyLpnLWvUbxr7lb5tv4edcOMPhz96vVAy5ubmEhYVZna25loiICLKysjh79myF5RkZGYSGhvLO O+9UqX+DwcCECRP49NNPeeGFF8xr45o3b07btm155ZVXMJlMJCQkWNxqBjh58qR5Zuinn34yr0e9 WkxMDIcPHyYlJQWACxcumMd97LHHePzxx82zr+fPn7dIIp5//nm2bdvG7t27ueeeeyqM/3rHNzs7 m5iYGAYOHMj06dNJS0srV8eW47d582aLB2oqo77OnzXWzq8t58cW1zr/ta0m4q+L6w+qd32JiNQH B4DVq1dz+vRpioqKKCoq4q233sLT05NRo0ZhS3lj12XMZA6uWcT+FfPwDomkVd9hpOzZalHH6N+M DnET2Dj1EeydXHD3DaTXc/Oxs7cnstcQTKWlfPO3pygpyMfFqwlthoypVAxOTk6EhoYSGRlZpX0w GAw8+uijzJo1izfeeKNcuclkqlK/v/bzQyJXJ1MrVqxg9OjRNG/enHbt2jFixAiLh2vmzp3LjBkz eP7557nlllt47LHH+OSTTyz6DQ8PN6/Hc3V1JSQkhPXr1+Pg4MCMGTOYOXMmt912GwaDAS8vL6ZO nUr79u0B+OMf/2j13ZfXO74eHh4888wzANjb2/Piiy+Wq2Pt+JlMJmbNmmV1OcC11Of5s8ba+bV2 fmxxvfNf26obf11df9W5vkRE6oPBVM3/e139qpWKLPD0vG75JCvDW+vfw8OjVts3JsXFxXTr1o2X X365wb4Y/0b1yiuvcPLkSRYvXmy98jXo/Mm11MT1JSJS13S7X8wcHR35/PPPeeutt+r1s6iNzeHD hzly5AgLFiwoV/b999/TpEmTCv+VlpZa1NX5k4pc7/oSEWnINJOqmVQRERGRBkczqSIiIiLS4ChJ FREREZEGR0mqiIiIiDQ4SlJFREREpMFRkioiIiIiDY4DXPmayZ49ezh27Bienp4MHz7colJqaipb t27lwoULODs706tXL6Kjo+slYBERERG58TkA2NnZERQURFFREenp6RYVTCYTO3bsoFevXgQFBXHi xAlWrFjBk08+qdc3iYiIiEitcABwdXUlKiqqwiTVYDAQGxtr/j0iIoKAgADOnTunJFVEREREakWl 16SWlZVx6dIlfH19ayMeEREREZHKJ6m7d++mRYsWeHt710Y8IiIiIiKVS1KTkpLYu3cv/fv3r614 RERERERsT1LPnDnDp59+ykMPPYTRaKzNmERERESkkXOwpdKpU6dYvXo1w4YNIyAgoLZjEhEREZFG zmAymUyrV6/m9OnTFBUVUVRUhNFoxNPTk1GjRlFcXMysWbMwGAw4OTlRWloKQFBQEMOHDyc7O/u6 Ayzw9Lxu+SST6brl1vq39oaB6rYXERERkbpnMJmsZIlWKEkVERERkZqmz6KKiIiISIOjJFVERERE GhwlqSIiIiLS4ChJFREREZEGR0mqiIiIiDQ4SlJFREREpMFRknoDOrhmMXv+MbO+wxARERGpMgeA 3Nxc9uzZw7Fjx/D09GT48OEWlVJSUvjmm2+4ePEiBoOBLl26cPvtt9dLwCIiIiJy43MAsLOzIygo iKKiItLT08tVSkpKolevXjRv3pz09HTeffddgoKCCAsLq+t4RURERKQRcABwdXUlKirqmknqXXfd Zf7Z19eX4OBg8vPz6y7KepaXcZ6vX5tA76kLiV/6N84c2E2TkI3uwLwAACAASURBVEj6TlsMQFlp KQdXLyJp5wYwmfCP7kDnUZNwdHU395G080sOf/oeBZkZuHr78n/DxhHcqQcARXk5/Pj+bM4c+A47 ewdu7jmYNkNGY7Czt2n8wpxMvl80g7OHf8AjoDnGgOY4G70s4v9u4TQyTyVi5+hE0xYxtP/dE3gE NDfXKSkp+f/s3XlYlXX+//HngcOBA4cDokKAsqaipqG5ZFmZ29S3bZJyMmx+E2rTMuE002iaU7bY PmWuZaU1TpKm5WiaWpbaYkbqYGo4iSiKCyBw2DkI9+8Pp1MnF0DZ1NfjurwuuD/b6z6Qvb1Xevfu TXx8PPPmzWvsj1RERETktMx17WgYBqWlpfzwww+Ul5fToUOHxszV4pQX5PHF1EfoOOQ2+v3xMZxl P79uNW3RbHLSt3Ljiwvx8raS+vaLbHl3Gn1HTwBg79er2fKvqVw7/lWCouNwZGeSn7nLNX7j7Ml4 +doYNmslVeWlrJ3yAJ7ePnS96fd1Wn/j7CfwtPhw2+trqCovZd1Lf3UrUtMWvYYtOJzBE2cCsD91 nVsBDVBRUUFGRgYWi6VhPzgRERGRM1DnG6fS09OZPXs2n3/+OTfffDNmc53r2/NCWX4O3RJGE9lv CGYfK75Bwa629JUL6Jk4Fi8fXzCZ6JYwhv2p61ztO5fPp+fIPxMUHQdAQHg00f2vA8BZWsy+bz6l 1/97GA9PM962AOLveIAfP1lSp/WdJUVkbfqMvqMewdPLgo+9FWGX9nMb69s6hCM7N3N452Zqaqpp 3+dafOyt3PrYbDb27t3L+vXrG+wzExERETlTda40O3fuTOfOncnPz2fx4sVcccUVXHLJJY2ZrUUx +/hyUdfeJ2yvLCrAWV7KVzP+7rbd29/u+rroUBaB7WNPOm9JTjY+9lZYfG2ubfbQCEpysuu0fnFO Nj4BrbDY7Ce0/aR7wmi8bQFs+ddUHAf30r7XNfRMHOtWaAMEBQWdcg4RERGRplTvw6FBQUHEx8fz ww8/XFBF6ql4+wfi5ePLkMdew69N6En72ILDcGTvpVVkxxPa/NqGUlFUQFV5qesUfPGRA/i1DavT +taAICqLHVRXVeLp5X3SPiYPT+Kuv4O46++gssTBpjeeYePrTzFownS3fg6HA6vVqlP+IiIi0uxq Pd1fXl7O+++/z9GjRwEoKChgx44dhIeHN3q4c4LJRKeht/PNnCk4y0oAqHDkk5+Z7urS6TfD2fLu NBzZmQCU5B5k+7/fBsDbFkBEn4Fs/ucrGDXVOMtK+M97s+gweFidlvdtHUKrqI5se38OGAbFh7PI 3LDSrc+WBdMo3J9xfD0/OwHtYsAw3PqUlpYSFRXFgAEDzuRTEBEREWlQZoDFixdz4MABnE4nTqeT qVOnYrfbSUpKwmq10qlTJ/79739TWFiIYRjEx8dz+eWXN3f2FqNHYjLfL3mTlY8kgsmExddG99vu cV2D2mHQMIzqaj5/4SGOVZTjE9CKbsNGu8Zfcf8TpM57gSX3/R8enp7EDriJrjfdVef1r37oeb6e +Tjv3zOYoKg4YgbcSNnRHFd724u7kTrvBUpyD2HU1GAPi+DyMZPc5rBYLERGRl5wN8SJiIhIy2Qy jF8dUqun4uLi07bPsp/6WkmA8bUsX9v8/v7+jTpeRERERJqeXosqIiIiIi2OilQRERERaXFUpIqI iIhIi3NhPZH/DOiaVhEREZGmpyOpIiIiItLiqEgVERERkRZHRep5JH/vLhaNGkje7u2NMr9h1DTK vCIiIiK/ZobjbxvatGkT6enp2O12Ro4cecoBKSkpFBcXc8899zRZyHPd58//mSM/bMHLx4phQEB4 FL3/8DcCIy5u0HV8W7Ulst9g/FqHNOi8AAX7/kvq2y8x9PE5DT63iIiIyK+ZATw8PAgLC8PpdJKX l3fKzmlpaVRVVTVZuPPJZXf9mQ6DhoFhkL5qIetfGcctr3zQoGv4BATRd/TEBp3zJxVFhY0yr4iI iMjJmAGsVitxcXGnLVKLior44osvuP7661m7dm2ThjyvmExE9hvMt/OexzBqMJk8KMvP4bPnkhk8 aTap817gYNpGWkV0YOjkNwBwlpXw3dsvcTDtazw8zVw88Ld0GzYKk4cnAGsmj6H4yH4ASvMOc/PL SwhsH+tasqa6mm2L55D55UowDII796RP0ni8rH6uPplffsz2pXOpcORjDWzDpcPvo33vAVQ48lkz eQwVRQU4S4tZct91APiHtHflAzh27Bi9e/cmPj6eefPmNfrHKCIiIue3Oj+Cavny5QwcOBBvb+/G zHPeM4wadq/9kLYXd8Nk+vmS4PKCPL6Y+ggdh9xGvz8+hrPs50dfbZw9GS9fG8NmraSqvJS1Ux7A 09uHrjf9HsCtWFw0auAJa6Ytmk1O+lZufHEhXt5WUt9+kS3vTqPv6AkA7P16NVv+NZVrx79KUHQc juxM8jN3AcePzt78yhL2ffMpu1YvOuXp/oqKCjIyMrBYLGf/IYmIiMgFr043Tm3duhUvLy+6dOnS 2HnOW5vnT2XJvb9hyb3Xk5exk6sees6tvSw/h24Jo4nsNwSzjxXfoGAAnKXF7PvmU3r9v4fx8DTj bQsg/o4H+PGTJXVeO33lAnomjsXLxxdMJroljGF/6jpX+87l8+k58s8ERccBEBAeTXT/6+q1fzab jb1797J+/fp6jRMRERE5mVqPpDocDjZs2MCoUaOaIs95y3VN6imYfXy5qGvvE7aX5GTjY2+Fxdfm 2mYPjaAkJ7tO61YWFeAsL+WrGX932+7tb3d9XXQoy+3ygDMVFBR01nOIiIiIQB2K1F27dmEymZg7 dy5w/NrD0tJSpk2bxpgxYxo94IXOr20oFUUFVJWXuq4hLT5yAL+2YXUa7+0fiJePL0Meew2/NqEn 7WMLDsORvZdWkR1POY+nl4XK4tPfPOVwOLBarTrlLyIiImet1tP9ffr0ITk52fVn+PDhhISEkJyc jNVqbYqMFzRvWwARfQay+Z+vYNRU4ywr4T/vzaLD4FMflXVjMtFp6O18M2cKzrISACoc+eRnpru6 dPrNcLa8Ow1HdiYAJbkH2f7vt92mCWwfS2HWbkrzDh2fo6jArb20tJSoqCgGDBhwZjsqIiIi8gtm gMWLF3PgwAGcTidOp5OpU6dit9tJSkpq7nwCXHH/E6TOe4El9/0fHp6exA64ia433VXn8T0Sk/l+ yZusfCQRTCYsvja633aP6xrUDoOGYVRX8/kLD3GsohyfgFZ0GzbabQ5bcDg9E5NZNekPeFp88GsT yqBHZ+LhefwJAxaLhcjISDp06NBwOy4iIiIXLJNhGMbZTFBcXHza9ll2+2nbx9eyfG3z+/v7t+jx TammupqUu/pxy9QPsQWHN3ccERERkTOm16KeB0pyDgJwePu3mL2t+DbCG6dEREREmlKdn5MqLVPZ 0SN8MW0C5fm5eHr7cNXYZ/Hw1I9VREREzm2qZs5xvq1DuP7pd5o7hoiIiEiDUpHayM6la1pFRERE WgpdkyoiIiIiLY6KVBERERFpcVSkSoMxjJrmjiAiIiLnCTMcf1vQpk2bSE9Px263M3LkSLdOaWlp LFu2DC8vL9e2m266ia5duzZtWmmxCvb9l9S3X2Lo43OaO4qIiIicB8wAHh4ehIWF4XQ6ycvLO6FT RUUFvXr14vrrr2/ygHJuqCgqbO4IIiIich4xA1itVuLi4k5ZpJaXl+Pn59fk4eS4j8aNoMuNI9m1 ehFFh/bRtkM3rnzgSbztrQAo3J/B9x+8ydGMnThLiwjv0Z/L/zgJTy9vAMryc/jsuWQGT5pN6rwX OJi2kVYRHRg6+Q3g+Juqti2eQ+aXK8EwCO7ckz5J4/Gy+rnW73fvY2z/8C0Off8ttuBwrvnLC/hf 1J4KRz5rJo+hoqgAZ2kxS+67DgD/kPau+cvyc/h69mQc+zPw8LLQOqYLPe58EP+Qdq59PHbsGL17 9yY+Pp558+Y12WcrIiIiLVOdrkmtqKggKyuLlJQU3n33XbZs2dLYueRXMtYtY8DDL3H7nE/wMHvx 3fxXXG3Fh7KIuvI6bn5lCcNmfUzhgQz+u2ax2/jygjy+mPoIEX0GkjDrY/onT3G1pS2azZGd33Hj iwu5dfpyLL42trw7zW38xtmTueTWUdw6fRnWwNZ8/8FbAPgEBHHzK0voO2YiwZ17kDB7FQmzV7kK 1OPzv4YtOJyE2au4ddoyoq+8zlUA/6SiooKMjAx27tzZYJ+ZiIiInLvqVKR27dqVPn36kJCQwMCB A/nyyy/ZunVrY2eTX7jk1iSsrdriYfYi9tpbyN7ypautfZ9rad/rGqqdlTgOZGAPjST3x+/dxpfl 59AtYTSR/YZg9rHiGxTsaktfuYCeiWPx8vEFk4luCWPYn7rObXyPO5NpHdMZb/9Aoq74DY7szDpn 920dwpGdmzm8czM1NdW073MtPv87CvwTm83G3r17Wb9+fT0+FRERETlf1elh/u3bt3d9HRoaypVX Xkl6ejo9evRotGByaoHtY6kscbi+L8vP4du3nqOqvIzWF3fB5OHJsbIStzFmH18u6tr7hLkqiwpw lpfy1Yy/u2339re7fe9h/vlXxRrYmuoqZ53zdk8YjbctgC3/morj4F7a97qGnolj3QplgKCgoDrP KSIiIue3M3rjlMlkwsNDT69qLsWHsrAFh7u+3/DyODrfkEhkvyHA8UsDsjZ9Vqe5vP0D8fLxZchj r+HXJvSMM3l6WagsPvnNUyYPT+Kuv4O46++gssTBpjeeYePrTzFownS3fg6HA6vVisViOeMcIiIi cn6otdIsLS1l8eLFFBQUAFBYWMhXX31F586dGz2c/Gzv12uorqrEWVZC2qLX6DDoVldbSe4hTP/7 R0PRoX3sWvN+3Sc2meg09Ha+mTMF5/+OvlY48snPTK9XvsD2sRRm7aY079DxOYoKXG1bFkyjcH8G AN5+dgLaxYBhuI0vLS0lKiqKAQMG1GtdEREROT+ZARYvXsyBAwdwOp04nU6mTp2K3W4nKSkJPz8/ Lr74Yj744AOKi4vx8PCgb9++dO/evbmzX1DM3j6sGHcnlSWFRF91A11uusvV1nf0BLYtmcPWlBkE RnSg09DhZG1aW+e5eyQm8/2SN1n5SCKYTFh8bXS/7R6CouPqPIctOJyeicmsmvQHPC0++LUJZdCj M/Hw9KTtxd1InfcCJbmHMGpqsIdFcPmYSW7jLRYLkZGRdOjQoc5rioiIyPnLZBi/OqRVT8XFxadt n2W3n7Z9fC3L1za/v7//eT0ejj8C6rK7HiK0W59a+4qIiIicD3Rh6TnjrP4tISIiInJOUZEqIiIi Ii3OGd3dL03rxhdSmjuCiIiISJPSkVQRERERaXFUpIqIiIhIi6MiVURERERaHBWp0mDS0tIIDQ0l NTW1UeavqalplHlFRESk5THD8bf9bNq0ifT0dOx2OyNHjjyh4+7du1m7di3FxcUEBAQwcOBAYmNj mzyw1N+tt97KF198gc1mwzAMOnXqxMsvv8wll1zSoOuEhoaSkJBAu3btGnRegG3btvHXv/6VTz75 pMHnFhERkZbHDODh4UFYWBhOp5O8vLwTOh08eJAVK1Zwxx13EBISwtGjR6msrGzysHLmnn/+eUaN GoVhGMyaNYsRI0bw/fffN+gawcHBzJgxo0Hn/MnJfi9FRETk/OUBYLVaiYuLIyws7KSdNmzYwMCB AwkJCQGgdevWp+wrLZvJZCIhIYH09HTX6fPs7Gx69epFbm4uI0eOJCQkhMGDB7vGOBwORo8eTURE BLGxsTz99NNUV1e72gcPHkx0dDTR0dGYzWZ27NjhtuaxY8eYPHkynTp1omPHjiQlJZ3wJq6UlBR6 9OhBeHg4l112GcuWLQMgJyeH7t27k5iYyJdffula55f5RERE5PxTp2tSjxw5QmBgICtWrODtt99m 7dq1OJ3Oxs4mjaCmpoa5c+fSp08fPDx+/vEfPnyYxMREfvvb37Jnzx7eeecdV9uYMWMwmUxkZGSQ mprKihUrePXVV13tn376KZmZmWRmZtK2bdsT1nziiSfYsGEDmzdvZteuXQQEBDBx4kRX+6JFi5gw YQLz5s0jOzubd999l7KyMuD40dlt27YxY8YM+vfv71rn008/bYyPR0RERFqIOj3Mv7i4mM8++4yh Q4cSGBjI8uXLWbt2Lddff31j5xPguuuu4+jRo27brrnmGl566aU6zzF+/HieeuopDMPgsssuY8GC BW7t2dnZ/Otf/2LAgAEA+Pn5AVBYWMgHH3zA0aNH8fLyIigoiCeffJLk5GT+8pe/1Gnt6dOns2rV Kmw2GwATJ06kV69eTJ8+HYBXXnmFZ599lvj4eADi4uKIi4ur876JiIjI+adORaqfnx+33HILgYGB APTt29d1OlYa36pVq856jp+uST0Vm83mKlB/KTMzkzZt2hAQEODadvHFF5OZmVmndfPy8igqKuLu u+922x4UFOT6+scff6Rr1651mk9EREQuDHUqUtu2bUteXp6rSP3piJic/yIjI8nLy6O4uBh/f38A 9uzZQ1RUVJ3Gt27dGpvNxurVq4mIiDhpn6ioKHbt2kX37t1POY+Pj88JR5NFRETk/FWna1L79u3L 559/TkVFBYZh8PXXX9OxY8fGziYtQFBQELfccgvjxo2juroah8PB448/ftqjsr9kMpm49957uf/+ +3E4HMDxm6G2bt3q6nPfffcxceJE0tPTAdi3bx8vvvii2zxdunRh+/btZGVlAZCbm9sQuyciIiIt lBlg8eLFHDhwAKfTidPpZOrUqdjtdpKSkgDo0KEDRUVFzJ07l+rqaqKiohg4cGCzBpem89Zbb/HQ Qw8RExOD2Wzm97//fZ2vRwWYMmUKzz77LJdffjkmk4mAgAAmTZpEjx49ABg1ahTHjh1j2LBhlJaW 0rZtWyZMmOA2R3R0NM888wxXX301VquViIgIVqxYgdlcp5MBIiIico4xGYZhnM0Ev36U0K/NsttP 2z6+luVrm/+nU9Dn6/hzybFjxwgICGD79u1ER0c3dxwRERE5h+m1qHLW9u7dC8Dnn3+On59fo7xx SkRERC4sOlcqZ+XAgQPcddddHDx4EF9fX+bPn4+Xl1dzxxIREZFznIpUOSvt2rXjiy++aO4YIiIi cp7R6X4RERERaXFUpIqIiIhIi6MiVURERERaHBWp56BtS95g05vP1nucYdQ0Qpq6+/LLL9m8eXOt /aZMmcKDDz5Y7/lrapp3/0RERKThmAFKS0vZtGkT6enp2O12Ro4c6epQWlrK9OnT3QZVV1djs9kY O3Zs06aVM1aw77+kvv0SQx+f02wZ0tLSCAwM5LLLLmvwubdt28Zf//pXPvnkkwafW0RERJqeGcDD w4OwsDCcTid5eXluHfz8/HjkkUfcti1cuJBu3bo1XUo5axVFhc22dmVlJY8++igpKSlUV1ezZs0a pk6dSqtWrRpsjV//3oqIiMi5zQxgtVqJi4s7aZH6azt27MBsNtOlS5cmCShQWeLgmzlTOLz9W/xD 2mELaYe3LcDVXrg/g+8/eJOjGTtxlhYR3qM/l/9xEp5e3lQ48lkzeQwVRQU4S4tZct91APiHtGfo 5DcAqKmuZtviOWR+uRIMg+DOPemTNB4vq59rjWPHjtG7d2/i4+OZN29evfK/9dZbbNq0iR9//BGL xcLcuXMpLy93Fan5+fncf//9fP7558TExBATE0NQUJBr/I4dO3j22WfZvHkzBQUFXH/99cyePRsf Hx9ycnIYPHgwubm5FBYWut50FRsby6effurK/vTTT5OSkoJhGPTv359XX331vHrbl4iIyPmmXtek GobBunXruPrqqxsrj5zExtlP4OFp5rbX1zBwwnTK8nPc2osPZRF15XXc/MoShs36mMIDGfx3zWIA fAKCuPmVJfQdM5Hgzj1ImL2KhNmrXAUqQNqi2RzZ+R03vriQW6cvx+JrY8u709zWqKioICMjg507 d57RPphMJgzDwGw2c8899xAWFuZqGzNmDF5eXmRlZbFs2TKys7Pdxu7evZvf/e53bNu2jT179rBz 505ef/11AIKDg9m2bRszZsygf//+ZGZmkpmZ6SpQAZ544gk2bNjA5s2b2bVrFwEBAUycOPGM9kNE RESaRr2K1IyMDPz9/Wnbtm1j5ZFfcZYUkbXpM/qOegRPLws+9laEXdrPrU/7PtfSvtc1VDsrcRzI wB4aSe6P39d5jfSVC+iZOBYvH18wmeiWMIb9qevc+thsNvbu3cv69evrvQ+jR48mLi6OqKgoJk6c iMPhcLUVFBSwdOlSpk2bhre3N23btmXIkCFu42+55RZuuukmKioq2LlzJx06dODbb7+t8/rTp0/n mWeewWazYTKZmDhxIsuWLav3foiIiEjTqdcbp3bv3u06nSpNozgnG5+AVlhs9lP2KcvP4du3nqOq vIzWF3fB5OHJsbKSOs1fWVSAs7yUr2b83W27t/+J6/3yFHx9WCwW5syZw5///Geef/55OnXqxOrV q7n00kvJzMykbdu2p70+NTs7m+TkZEpKSujVqxdms9mt0D2dvLw8ioqKuPvuuxtkX0RERKRp1KtI zcrKYvDgwY2VRU7CGhBEZbGD6qpKPL28T9pnw8vj6HxDIpH9jh+BzFi3jKxNn7n18fSyUFl84s1T 3v6BePn4MuSx1/BrE3raLA6HA6vVisViOaN96dKlC++88w4PP/wwr7/+OrNmzSI4OJj8/HwqKirw 8fE56bgRI0aQnJzMbbfdBsA777zD0qVL3fr4+Phw9OjRE8a2bt0am83G6tWriYiIOKPcIiIi0vTq dbq/oKBAN5s0Md/WIbSK6si29+eAYVB8OIvMDSvd+pTkHsLkcfxHWXRoH7vWvH/CPIHtYynM2k1p 3iEAKooKjjeYTHQaejvfzJmC839HXysc+eRnpruNLy0tJSoqigEDBtR7H5KTk3nttdc4ePAge/bs 4dtvv6Vjx44AtGvXju7du/P0009jGAa7d+9mwYIFbuP37duHp6cnAD/++KPretRf6tKlC9u3bycr KwuA3Nzc/+2eiXvvvZf777/fdfQ1JyeHrVu31ns/REREpOmYDMMwFi9ezIEDB3A6nTidTmw2G3a7 naSkJFfH6upqnnrqKf72t7/h5/fzXd/FxcWnXWCW/dSnqQHGG8Zp22ubv7ai+VwfD8cLz69nPk7x kf0ERcUR3KUnZUdz6Dt6AgD7U9exbckcjlWUExjRgXY9ryJr01quHT/VbZ4d/36b9I9T8LT44Ncm lEGPzsTD05Oa6mN8v+RNMr/8GEwmLL42ut92D+0u+/kGuaqqKnr37s2ll17KO++8U2vmX8rIyOCF F15g5cqVBAYGkpycTFJSklvhOWrUKDIyMoiPj+eqq64iOzvb9XzeZcuWMWXKFEpLS7nkkkv4v//7 Pz788EM+/PBDt3VeeuklZsyYgdVqJSIighUrVmA2m6mqquLZZ58lJSUFk8lEQEAAkyZN4oYbbqjX foiIiEjTMRlGLVViLVSkNn6Rer6YOXMmgYGBJCYmNncUERERaeHqdU2qyNkIDQ3FZrM1dwwRERE5 B6hIlSYzbNiw5o4gIiIi54h63TglIiIiItIUVKSKiIiISIujIlVEREREWhwVqSIiIiLS4qhIPYfk 793FolEDydu9/bT9ti15g01vPtvg6xtGzWnba8tXmneINU/cw6JR17Lsr7dz8D9f12t8c/vyyy/Z vHnzKdvT0tIIDQ0lNTX1tPNMmTKFBx98sKHjUVNz+p9PbfmysrIYMmQIF110EfHx8axevbpe40VE RBqSGY6/TWjTpk2kp6djt9sZOXKkW6fq6mpWrlxJZmYmhmEQFxfH0KFDMZlMzRL6QuXbqi2R/Qbj 1zqkydcu2PdfUt9+iaGPzzlln9ryfffOywSERzFo4nQw4NeP6G3O/auLtLQ0AgMDueyyy07aHhoa SkJCAu3atWviZLBt2zb++te/8sknn5yyT235/va3v9GpUyeWL1+OYRgn/Hyac/9EROTCYwbw8PAg LCwMp9NJXl7eCZ1SU1MpKSnhgQceoLq6mgULFrBjxw4uueSSJg98IfMJCKLv6InNsnZFUWGtfWrL V7Dvv1z5p6fw9PI+o/HNpbKykkcffZSUlBSqq6tZs2YNU6dOpVWrVm79goODmTFjRrNkPNl/t79W W75t27Yxb948fHx8zmi8iIhIQzIDWK1W4uLiTlmklpeXExERgaenJ56ensTGxtb6JiVpOGsmj6H4 yH4ASvMOc/PLSwhsH+tqryxx8M2cKRze/i3+Ie2whbTD2xbgaq+prmbb4jlkfrkSDIPgzj3pkzQe L+vx19t+NG4E/e59jO0fvsWh77/FFhzONX95Af+L2lPhyGfN5DFUFBXgLC1myX3XAeAf0p6hk9+o U77v/vky+1PXUXxkP+tefAgPs1e9xteWvyw/h8+eS2bwpNmkznuBg2kbaRXRwTU/wLFjx+jduzfx 8fHMmzevXp//W2+9xaZNm/jxxx+xWCzMnTuX8vJyV5E6ePBgMjIyANi/fz9paWl07drVNT4/P5/7 77+fzz//nJiYGGJiYggKCnLL9vTTT5OSkoJhGPTv359XX33V9Tay3r178/rrr/Pcc8/x2WefER0d zXvvvUdsbCw5OTkMHjyY3NxcCgsLiY6OBiA2NpZPP/20Tvn+9re/sXz5cjIyMkhISMBisdRrfG35 s7OzueWWW/j444956KGH+OSTT+jWrZtrfhERkZMyfiEtLc2YP3++8Wt5eXnGq6++amzdutUoKSkx 5s6daxQWFhqGYRhFRUWn/fMcnPZPbWqb/3wf/2sLk641CrJ2u237/IWHjA1TJxjHnJVGuSPf+Pjv dxvfvPGMq33LgunGqseSDGd5qWHU1Bjfzn3erX353+4wl5u+4gAAIABJREFUlj883MjL2GlUFBUY n055wPhq5uNua+zd+ImxevKYM8r3kyX332AczUyv9/ja8pcePWIsGj3IWPPEPcber9cYVeVlRunR I25zFBcXG/7+/kafPn1q3YdfmzlzpnHVVVcZJSUltfa96KKLjO3bt7ttGzZsmDFy5EijoqLCyMnJ Ma655hrjT3/6k6t90qRJxrXXXmsUFxcbNTU1xp///Ge39l69ehk9e/Y0Nm/ebOTl5Rk33HCDMWrU KLc1Fi9ebAwePPiM8v3k4osvNv7zn//Ue3xt+Q8cOGCEh4cbQ4YMMd5//32jpKTEOHDgQK1ZRUTk wlanG6cCAgIIDQ1ly5YtvPzyy4SHhxMQEFD7QGl0zpIisjZ9Rt9Rj+DpZcHH3oqwS/u59UlfuYCe iWPx8vEFk4luCWPYn7rOrU+PO5NpHdMZb/9Aoq74DY7szCbci9OrS/6y/By6JYwmst8QzD5WfIOC 3dptNht79+5l/fr19V5/9OjRxMXFERUVxcSJE3E4HHUeW1BQwNKlS5k2bRre3t60bduWIUOGuPWZ Pn06zzzzDDabDZPJxMSJE1m2bJlbnylTptCzZ09at27N8OHDSU9Pr/d+NJa65M/OzmbixIncdttt +Pn5ER4e3kxpRUTkXFGn16K+++679O3bl7i4OPLz8/noo4/YuHEj/fr1q32wNKrinGx8AlphsdlP 2l5ZVICzvJSvZvzdbbu3v3t/D/PPvwrWwNZUVzkbPuwZqGt+s48vF3Xtfdq5fnmKvT4sFgtz5szh z3/+M88//zydOnVi9erVXHrppbWOzczMpG3btidcv/qTvLw8ioqKuPvuu0+b1cvLy/V1SEgIlZWV Z7AnDa+u+W02GwMGDGjCZCIicq6rtUgtLy/nyJEjxMXFAcf/5zNkyBCWL1+uIrUFsAYEUVnsoLqq 8qQ3JHn7B+Ll48uQx17Dr03oGa/j6WWhsrj2m6caWkPlB3A4HFitViwWyxmN79KlC++88w4PP/ww r7/+OrNmzap1THBwMPn5+VRUVJz0hqTWrVtjs9lYvXo1ERERZ5QLwMfHh6NHj57x+DPVUPlFRER+ rdbT/T4+PlgsFnbt2oVhGNTU1LB7926d7m8hfFuH0CqqI9venwOGQfHhLDI3rPy5g8lEp6G3882c KTjLSgCocOSTn1m/08WB7WMpzNpNad6h43MUFTTYPpxWA+UvLS0lKirqjI7mJScn89prr3Hw4EH2 7NnDt99+S8eOHes0tl27dnTv3p2nn34awzDYvXs3CxYscLWbTCbuvfde7r//ftdlBDk5OWzdurVe Gbt06cL27dvJysoCIDc3t17jz1RD5RcREfk1M8DixYs5cOAATqcTp9PJ1KlTsdvtJCUlYTKZGDFi BGvWrGHNmjUYhkFYWBg33HBDc2eX/7n6oef5eubjvH/PYIKi4ogZcCNlR3Nc7T0Sk/l+yZusfCQR TCYsvja633YPQdFxdV7DFhxOz8RkVk36A54WH/zahDLo0Zl4eHo2xi65aYj8FouFyMhIOnToUO/1 x44dywsvvMCUKVMIDAwkOTmZpKSkOo9PSUlh1KhRtGvXjvj4eO666y6ys7Nd7VOmTOHZZ5/l8ssv x2QyERAQwKRJk+jRo0ed14iOjuaZZ57h6quvxmq1EhERwYoVKzCb63RFz1lpiPwiIiK/ZjKMXz2x u55qexTVLPvJr5X8yfhalq9t/p8ec3O+jpeWY+bMmQQGBpKYmNjcUURERM57jX+YReQ8ERoais1m a+4YIiIiFwQVqSJ1NGzYsOaOICIicsGo03NSRURERESako6kNjJdcyoiIiJSfzqSKiIiIiItjopU EREREWlxVKSKiIiISItjhuNv49m0aRPp6enY7XZGjhzp1qmoqIiPPvqI3NxcrFYrv/nNb4iMjGyW wCIiIiJy/vMA8PDwICwsjJiYmJN2+uCDD+jQoQNjx45l2LBhLFmypNaH1IuIiIiInCkPAKvVSlxc HGFhYSd0qKio4NChQ/Tq1QuANm3a0LNnT7777rumTSoiIiIiF4w6XZNaVVWF0+l0fR8cHExubm6j hRIRERGRC1utRaqPjw+hoaFs2rSJyspKMjIyWLt2LSUlJU2RT0REREQuQHU6knr77bdz9OhRFixY wJ49e7jqqquw2+2NnU1ERERELlB1euNUYGAgt956q+v71atXExIS0mihREREROTCVqcjqXv37qWy shKAPXv2sH37dteNVCIiIiIiDc0MsHjxYg4cOIDT6cTpdDJ16lTsdjtJSUkAHDlyhBUrVuB0OgkK CuKuu+7CarU2a3AREREROX+ZDMMwzmaC2p6XOquWa1fH17J8bfP7+/u36PEiIiIiUn96LaqIiIiI tDgqUkVERESkxVGRKiIiIiItjopUEREREWlxVKSKiIiISIujIlVEREREWhwVqSIiIiLS4pgBsrOz Wbt2Lbm5uXh7ezNo0CA6d+7s6lRTU8Mnn3zCrl278PT05PLLL+eyyy5rttAiIiIicn4zG4bBhg0b GDRoEGFhYezZs4eUlBTGjh3relD9119/TVFREX/605+orKzk7bffJigoiOjo6GaOLyIiIiLnIw+T ycSIESMIDw/HZDIRGxtLSEgIR44ccXXasmULAwYMwMPDA6vVyhVXXMGWLVuaMbaIiIiInM9OuCa1 pqaGgoIC2rRp4/q+qKiINm3a8NVXX5Genk5wcDD5+flNHlZERERELgzmX2/YuHEjMTExBAYGAnDs 2DE8PDwwmUzs3bsXp9NJmzZtqKysbPKwIiIiInJhcCtSMzMz2bx5M0lJSa5tFosFOF6sJiYmApCV leW6XlVEREREpKG5TvcfPHiQpUuX8rvf/Q6bzebWKTg4mOzsbNf3Bw4cIDg4uOlSioiIiMgFxQNg //79LFy4kOHDhxMSEnJCp169erF+/Xqqq6spKSkhNTWVnj17NnlYEREREbkwmKuqqpg/fz4mk4n3 3nuP6upqAMLCwhg5ciQA8fHxFBYWMnv2bDw8PBg8ePBJi1kRERERkYZgMgzDOJsJiouLT9s+y24/ bfv4Wpavbf7aro1t7vEiIiIiUn96LaqIiIiItDgqUkVERESkxVGRKiIiIiItzgkP8xd3uuZURERE pOnpSKqIiIiItDgqUkVERESkxVGR2gQ+GjeCQ99vqrWfYdQ0QRoRERGRls8MkJ2dzdq1a8nNzcXb 25tBgwbRuXNnV6fS0lI2bdpEeno6drvd9ZB/aTgF+/5L6tsvMfTxOc0dRURERKTZmQ3DYMOGDQwa NIiwsDD27NlDSkoKY8eOdd005OHhQVhYGE6nk7y8vGaOfH6qKCps7ggiIiIiLYbZZDIxYsQI14bY 2FhCQkI4cuSIq0i1Wq3ExcVdsEVqWX4OX8+ejGN/Bh5eFlrHdKHHnQ/iH9IOgHcSunPH2xvw9g8E YGvKDI5VlNH77nGuOY7u+YH/LJxF0cF9tO3YnSvvfwJveysqHPmsmTyGiqICnKXFLLnvOgD8Q9oz dPIbrvU/ey6ZwZNmkzrvBQ6mbaRVRAdXe011NdsWzyHzy5VgGAR37kmfpPF4Wf3q1A5w7Ngxevfu TXx8PPPmzWv8D1VERETkNE54BFVNTQ0FBQW0adOmOfK0SGmLXsMWHM7giTMB2J+6zq3Aq4tDaRsZ 8NeX8PYPZMMr4/lu/lSufOAJfAKCuPmVJez75lN2rV50ytP95QV5fDH1EToOuY1+f3wMZ9nPr2tN WzSbnPSt3PjiQry8raS+/SJb3p1G39ET6tQOUFFRQUZGBhaLpb4fj4iIiEiDO+HGqY0bNxITE0Ng YGBz5GmRfFuHcGTnZg7v3ExNTTXt+1yLj71Vvea45NYkrK3a4mH2IvbaW8je8kW9xpfl59AtYTSR /YZg9rHiGxTsaktfuYCeiWPx8vEFk4luCWPYn7quzu0ANpuNvXv3sn79+nrlEhEREWkMbkdSMzMz 2bx5M0lJSc2Vp0XqnjAab1sAW/41FcfBvbTvdQ09E8e6FYr1Edg+lsoSR73GmH18uahr7xO2VxYV 4Cwv5asZf3fb7u1vr1P7LwUFBdUrk4iIiEhjcRWpBw8eZOnSpdx5553YbLbmzNTimDw8ibv+DuKu v4PKEgeb3niGja8/xaAJ0wHwMHtRUVTguia15ljVaecrPrzfdT3rTzy9LFQW1//mKW//QLx8fBny 2Gv4tQmtd/svORwOrFarTvmLiIhIs/MA2L9/PwsXLmT48OGEhIQ0d6YWZ8uCaRTuzwDA289OQLsY MAxXuz0skox1y6muquTAd+vZs+GjE+bYt/ETqqsqqSorIW3Ra1w88Ldu7YHtYynM2k1p3iEAKooK 6hbOZKLT0Nv5Zs4UnGUlx8c68snPTK9b+/+UlpYSFRXFgAED6rauiIiISCMyV1VVMX/+fEwmE++9 9x7V1dUAhIWFuZ6HunjxYg4cOIDT6cTpdDJ16lTsdvsFc1lA24u7kTrvBUpyD2HU1GAPi+DyMZNc 7X3uHsfXsyeTsW4Zkf2G0DNx7AlFoC2kHSvGJ1JZXEB0//+jy013ubcHh9MzMZlVk/6Ap8UHvzah DHp0Jh6enrXm65GYzPdL3mTlI4lgMmHxtdH9tnsIio6rUzuAxWIhMjKSDh06nM1HJSIiItIgTIbx i0OCZ6C4uPi07bPsJ177+Evja1m+tvl/ekxWY40XERERkaan16KKiIiISIujIlVEREREWhwVqSIi IiLS4pzwxilxp2taRURERJqejqSKiIiISIujIlVEREREWhwVqSIiIiLS4pgBsrOzWbt2Lbm5uXh7 ezNo0CA6d+7s6lRbu4iIiIhIQzIbhsGGDRsYNGgQYWFh7Nmzh5SUFMaOHYu/vz+1tYuIiIiINDSz yWRixIgRrg2xsbGEhIRw5MgR/P39qa1dRERERKShnXBNak1NDQUFBbRp0+akA2prFxERERE5WycU qRs3biQmJobAwMCTDqitXURERETkbLkVqZmZmWzevJnrrrvupJ1raxcRERERaQiuIvXgwYMsXbqU 3/3ud9hsthM61tYuIiIiItJQzAD79+9n8eLFDB8+nJCQkBM61dYuIiIiItKQzFVVVcyfPx+TycR7 771HdXU1AGFhYYwcOZLa2kVEREREGprJMAzjbCYoLi4+bfssu/207eNrWb62+Wt7DFZzjxcRERGR +tNrUUVERESkxVGRKiIiIiItjopUEREREWlxVKSKiIiISIujIlVEREREWhwVqSIiIiLS4qhIlXOG YdQ0dwQRERFpImaA7Oxs1q5dS25uLt7e3gwaNIjOnTu7OmVlZfH5559z9OhRTCYTffv25Yorrmi2 0HLhKdj3X1Lffomhj89p7igiIiLSBMyGYbBhwwYGDRpEWFgYe/bsISUlhbFjx7oeVJ+ZmcmgQYNo 164deXl5vP7664SFhREVFdW86eWCUVFU2NwRREREpAmZTSYTI0aMcG2IjY0lJCSEI0eOuIrUa665 xtXepk0b2rdvT3l5eZOHPRcd3vEdO5e9w7HKckpyD9Hn7nFseus57GGRDPn7awDUVFezbfEcMr9c CYZBcOee9Ekaj5fVD4DC/Rl8/8GbHM3YibO0iPAe/bn8j5Pw9PIGoCw/h69nT8axPwMPLwutY7rQ 484H8Q9pB8A7Cd254+0NePsHArA1ZQbHKsroffc41/jPnktm8KTZpM57gYNpG2kV0YGhk9+oNV9D 7N9H40bQ797H2P7hWxz6/ltsweFc85cX8L+oPRWOfNZMHkNFUQHO0mKW3HcdAP4h7V35AI4dO0bv 3r2Jj49n3rx5jfozFRERkcZ3wjWpNTU1FBQU0KZNG7fthmFQUlJCamoq5eXldOjQoclCnusOpm2k z6gJtOnQje8/nMuNzy8gb/d2SvMOA5C2aDZHdn7HjS8u5Nbpy7H42tjy7jTX+OJDWURdeR03v7KE YbM+pvBABv9ds9jVnrboNWzB4STMXsWt05YRfeV1rgKwrsoL8vhi6iNE9BlIwqyP6Z885Rfznz7f 2e4fwMbZk7nk1lHcOn0Z1sDWfP/BWwD4BARx8ytL6DtmIsGde5AwexUJs1e5FagAFRUVZGRksHPn znrtt4iIiLRMJxSpGzduJCYmhsDAQLft6enpzJ49m88//5ybb74Zs9ncZCHPdQHtoglsH4s9NJLw nv3xtrfCr00oxUcOAJC+cgE9E8fi5eMLJhPdEsawP3Wda3z7PtfSvtc1VDsrcRzIwB4aSe6P37va fVuHcGTnZg7v3ExNTTXt+1yLj71VvTKW5efQLWE0kf2GYPax4hsU7GqrLd/Z7h9AjzuTaR3TGW// QKKu+A2O7Mx65bfZbOzdu5f169fXa5yIiIi0TG6VZmZmJps3byYpKemEjp07d6Zz587k5+ezePFi rrjiCi655JImC3o+MJlO/LqyqABneSlfzfi7W19vf7vr67L8HL596zmqystofXEXTB6eHCsrcbV3 TxiNty2ALf+aiuPgXtr3uoaeiWPdCs3amH18uahr7xO21yXf2e4fgMcv/tFjDWxNdZWzztl/EhQU VO8xIiIi0jK5KoODBw+ydOlS7rzzTmw22ykHBAUFER8fzw8//KAitQF4+wfi5ePLkMdew69N6En7 bHh5HJ1vSCSy3xAAMtYtI2vTZ652k4cncdffQdz1d1BZ4mDTG8+w8fWnGDRhOgAeZi8qigpc16TW HKtq0HyNOf4nnl4WKotPf/OUw+HAarVisVjOeB0RERFpGTwA9u/fz8KFCxk+fDghISFuHcrLy3n/ /fc5evQoAAUFBezYsYPw8PCmT3s+MpnoNPR2vpkzBef/jo5WOPLJz0x3dSnJPYTJ4/iVGUWH9rFr zftuU2xZMI3C/RkAePvZCWgXA4bhareHRZKxbjnVVZUc+G49ezZ81KD5GnX8/wS2j6UwazeleYeO z1FU4NZeWlpKVFQUAwYMqNe8IiIi0jKZq6qqmD9/PiaTiffee4/q6moAwsLCGDlyJFarlU6dOvHv f/+bwsJCDMMgPj6eyy+/vJmjnz96JCbz/ZI3WflIIphMWHxtdL/tHoKi4wDoO3oC25bMYWvKDAIj OtBp6HCyNq11jW97cTdS571ASe4hjJoa7GERXD5mkqu9z93j+Hr2ZDLWLSOy3xB6Jo6tV5FYW77G Hg9gCw6nZ2Iyqyb9AU+LD35tQhn06Ew8PD0BsFgsREZG6oY+ERGR84TJMH5xyO0MFBcXn7Z9lv3E axd/aXwty9c2/0+PyWqp40VERESk/vRaVBERERFpcVSkioiIiEiLoyJVRERERFocPZG/kemaVhER EZH605FUEREREWlxVKSKiIiISIujIvUcYhg1zR2hUaWlpREaGkpqamqzrF9Tc35/viIiIucSD4Ds 7Gz++c9/8o9//IMZM2bwww8/nHJASkoKc+bMabKAclzBvv/yyZP3NneMMxIdHU1ISAhhYWH069eP f//73yftFxoaSkJCAu3atWvihLBt2zZ+85vfNPm6IiIicnJmwzDYsGEDgwYNIiwsjD179pCSksLY sWNPuKknLS2Nqqq6v/ddGk5F0enfW9/SrVy5kp49e/LVV18xYsQIysrKGDFihFuf4OBgZsyY0Sz5 8vLymmVdEREROTkPk8nEiBEjCA8Px2QyERsbS0hICEeOHHHrWFRUxBdffMGVV17ZTFEvTBWOfJY9 lMAXUx8h54etLLnvOpbcdx1rJo8BoHB/Bov/ONTtUgBnaTELkwZQXVUJwEfjRrBnwwo+fvT/sTBp AJ89+yCVRQWu/jXV1fxn4Ww+fPAmPvzTjXw18zGqykvdchw7dowePXpw9913n/G+mEwm+vfvzz/+ 8Q8ee+wx1/bBgwcTHR1NdHQ0ZrOZHTt2uI3Lzs6mV69e5ObmMnLkSEJCQhg8eLBbtsmTJ9OpUyc6 duxIUlLSCU9VSElJoUePHoSHh3PZZZexbNkyAHJycujevTuJiYl8+eWXrhy/nN/hcDB69GgiIiKI jY3l6aefdr0+uLZ8O3bsICIiwu1SgsLCQkJCQqioqDjjz1JEROR8d8I1qTU1NRQUFNCmTRu37cuX L2fgwIF4e3s3WTgBn4Agbn5lCX3HTCS4cw8SZq8iYfYqhk5+A4DA9rHYQtqRvfUr15h9mz6lfa8B eHr9/LPKWLeMAQ+/xO1zPsHD7MV3819xtaUtms2Rnd9x44sLuXX6ciy+Nra8O80tR0VFBRkZGezc ufOs9+m6665j9+7dFBUVAfDpp5+SmZlJZmYmbdu2PemYw4cPk5iYyG9/+1v27NnDO++842p74okn 2LBhA5s3b2bXrl0EBAQwceJEV/uiRYuYMGEC8+bNIzs7m3fffZeysjLg+NHbbdu2MWPGDPr37+/K 8emnn7rGjxkzBpPJREZGBqmpqaxYsYJXX321Tvm6du1KTEwMq1atcvX94IMPuOmmm/Dx8TnLT1JE ROT8dUKRunHjRmJiYggMDHRt27p1K15eXnTp0qVJw0ndxF13Bz9+ssT1feaGlcRcc6Nbn0tuTcLa qi0eZi9ir72F7C1futrSVy6gZ+JYvHx8wWSiW8IY9qeucxtvs9nYu3cv69evP+u8drsdHx8fDh8+ XOcx2dnZTJw4kdtuuw0/Pz/Cw8NdbdOnT+eZZ57BZrNhMpmYOHGi60gpwCuvvMKzzz5LfHw8AHFx cdxxxx11WrewsJAPPviAl156CS8vL4KCgnjyySd544036pzvgQcecOu/YMEC7rrrrjrvu4iIyIXI 7WH+mZmZbN68maSkJNc2h8PBhg0bGDVqVJOHk7qJ6DuQ7975B+UFuWAyUXzkABd1ueyU/QPbx1JZ 4gCgsqgAZ3kpX834u1sfb3/7CeOCgoIaJK/D4aCiooKwsLA6j7HZbAwYMOCE7Xl5eRQVFZ1wGcIv s/7444907dr1jLJmZmbSpk0bAgICXNsuvvhiMjMz65QP4Le//S0PP/wwhw4dwmQysWfPHq6++uoz yiMiInKhcBWpBw8eZOnSpdx5553YbDZXh127dmEymZg7dy5w/Pq/0tJSpk2bxpgxY5o+8QXK08tC ZfHJb57y8DRz8cDfkrFuOWYfK9FXXQ8m0ynnKj6UhS34+JE+b/9AvHx8GfLYa/i1CT1tBofDgdVq xWKxnPmOACtWrKBTp05uv2dnqnXr1thsNlavXk1ERMRJ+0RFRbFr1y66d+9+ynl8fHw4evToCdsj IyPJy8ujuLjYdSPhnj17iIqKqnNGLy8v7r77bv75z3/i5+fHiBEjMJ3m5yMiIiL/O92/f/9+Fi5c yPDhwwkJCXHr0KdPH5KTk11/fuqTnJyM1WptltAXosD2sRRm7aY07xAAFb+48Qmg45DbyFi/nL1f ryH2mptOGL/36zVUV1XiLCshbdFrdBh06/EGk4lOQ2/nmzlTcJaVHJ/bkU9+Zrrb+NLSUqKiok55 tLCuvvrqK8aNG8eTTz55VvP8xGQyce+993L//ffjcBw/OpyTk8PWrVtdfe677z4mTpxIevrxfdq3 bx8vvvii2zxdunRh+/btZGVlAZCbmwscPyJ7yy23MG7cOKqrq3E4HDz++OP1PrNwzz33MH/+fN5/ /32d6hcREakDc1VVFfPnz8dkMvHee++57loOCwtj5MiRzRxPfmILDqdnYjKrJv0BT4sPfm1CGfTo TDw8PQHwDWpLQLsYSnIOEhAefcJ4s7cPK8bdSWVJIdFX3UCXm34ulHokJvP9kjdZ+UgimExYfG10 v+0egqLjXH0sFguRkZF06NDhjPLfdNNNmEwm2rdvz8yZM7nlllvOaJ6TmTJlCs8++yyXX345JpOJ gIAAJk2aRI8ePQAYNWoUx44dY9iwYZSWltK2bVsmTJjgNkd0dDTPPPMMV199NVarlYiICFasWIHZ bOatt97ioYceIiYmBrPZzO9//3v+8pe/1CtjWFgYnTt3Zu/evcTFxdU+QERE5AJnMgzDOJsJfv2o n1+bZT/x2sZfGl/L8rXN/+tnuZ5v4+vjm9efJjDiYuKud78p6KNxI7jsrocI7danwdaS+rvvvvu4 5JJLeOCBB5o7ioiISIun16KeJw7vSOXwjlQ6Dkk4RY+z+reInKV169axbt06XcctIiJSR+bau0hL dqyygqXJN+Nl9ePKB57Ew+zV3JHkF8rKyoiLi8NutzN37tyzvulMRETkQqHT/S18vIiIiMiFSKf7 RURERKTFUZEqIiIiIi2OilQRERERaXFUpF5ADKPmjMZ9NG4Eh77f1MBpTq6qqopx48ZRVlbWJOud zJQpU3jwwQfrPa6m5sw+XxGRU0lPT+fll1+uU9+z/fuzOf/+TUtLIzQ0lNTU1NP2O9O/n2tT29/f teXLyspiyJAhXHTRRcTHx7N69ep6jW+pavv9q8/v55nwAMjOzuaf//wn//jHP5gxYwY//PCDW6e0 tDSeeuopnnvuOdefHTt2NFooaXgF+/7LJ0/e29wxajVy5Ehat/7/7N15WFXV+sDx74HDfBhEhEAQ kJAhNTRnLU3Q7FpWYpph9+bYdNMms8jKSrK0W94ccEjNBtHUMjVzSFEyyQFNnPAKgiCozKOHQdi/ P/x58sRwDohA+n6ep+ehvda79ruXh3UWe6+9d2usra112y5dusTo0aPx9PTEw8ODJUuW6MU89thj ODk54eXlhaenJ4MHD+b48eNNmnd8fDwPPPDATWs/JycHZ2dnxo4dy9ixY/n+++91ZZWVlbz66qv4 +voSGBhYrX8MOX/+PA8//DA+Pj5069aNX3/9Va98zpw5uv22b9++1nb27dvHwIED+de//qWX3/WG DRtG9+7d65Wfofj//Oc/hIWFMWjQIDIyMhrU7t+5fw8ePEhISAju7u4EBATwww8/1Cs/Q/HSv83b v3feeSexsbF89tlnBvdV0/hZH805/rq6uhIaGooaG5cXAAAgAElEQVS7u3uDcr8RxozfhvKbOnUq fn5+pKSkEBsby7333luv+JbK0OfPULmhz49BVVVVyqpVq5Tz588rVVVVSmJiovLBBx8ohYWFyjW/ //67smXLFqUmhYWFdf73EdT5nyGG2r/V4xtLRvx+ZduMiQ2K3TT1CSUj/vdGzqi6qKgoZdiwYdW2 Hz58WFm3bp1SVVWlHDlyRDEzM1PS09N15Y8++qjyxRdfKIqiKFVVVcr8+fOVjh071rqf5cuXK6tW raq1fObMmcq///3veuW+c+dOJSQkpF4x1+8vOjq6zjrZ2dlKr169aiz76KOPlMcff1ypqKhQcnJy lE6dOim7du0yev/9+/dXFixYoCiKoiQkJCgeHh56/Xu9O++8s9Z2/vnPfypr166ttXzlypVKSEiI 0q1bN6Nzq0/81KlTlXnz5jWo7b9r/1ZWVirDhg1TDhw4oFRVVSnbt29XrKysam3/r+oTL/3bfP1b UlKi+Pv7K6dOnap1X7WNn8ZqKeOvIQ0Znw25kfH7Gn9/fyU2NraRMjKeMd8fN8rQ56+uckOfH0NM VCoVo0ePpm3btqhUKnx8fHBxceHSpUu6iaxWq8XGxqZ+s1/RKC6eOMSuWS+yfcYEvn9hKOcP7WH9 cw+y44M/z4rmpyXx63/fZMPkR/hu/P38Nv9tKivKACgtyGXjy6H8OvcNMk8dYf1zQ1j/3BC2z9B/ qHzy3p/Z9NrjrJ0YzOapo0g7uFuvvOJyMXv+8xqrn76Pza+Ppuhiml75lStX6NKlC2PHjm3wsf7n P/9h1qxZ1bZ36dKF0NBQVCoVHTp0wNbWttbnjapUKkJDQ0lISKh2+ebChQs89NBD7Ny5kyFDhui2 5+bm8sQTT+Di4kLv3r05efKkXtyJEycYM2YMAQEB3HHHHYwdO5bS0lIAMjMz6dy5M2FhYezduxdv b2+8vb0JCQnR65sZM2bg5+dHhw4dGDdunN6jyUaOHMnbb7/Nyy+/jFarrXe/ffHFF7z33nuo1Woc HR157bXXWLp0qVGxBQUFHDlyhOeeew4APz8/xo0bx+LFi+udh6IoODo61liWnp7Ohx9+yOuvv17v do2Nb926dYPaNqQl96+JiQk//vgj3bt3R6VSMWjQIDp27MixY8eMarM+8dK/zde/1tbWTJ06lfnz 59dap7bx01jNNf6GhIToxk21Wl3tKq2h8dnQ+Nq9e3cOHz7MyJEjcXJyonv37iQlJQHGjd+G8ps6 dSr+/v4kJiYSGhpa73hD+aenp9OtWzeysrIYM2YMLi4ueu3f6PfHNZ9++imxsbE1lhn6/NVVXp/P T02qrUmtqqoiLy8PJycn3bbS0lJSU1OJiori22+/5fDhw0bvQNy4jKOx9Bj/Jk6+nTj2w3Ie+ngV 2YnHKcm+CEDRhVS8+g5h2GfrGb7wZ/LPJ/G/7esAsLR3ZNhn6+k5MRzngC6ERm4lNHIrg2f8+SWQ sm8bh7+ZS98XPuDxpTu596WPuFJWqpfDH2si6fjYeB6btxErh9Yc+36ZXnlpaSlJSUnVBhCjjzEj g8LCQgIDA2utU1VVxfjx43nxxRf1Pp9/rbN8+XJ69OiBicmfH+/Vq1cTHBzMhAkT+Oabb2jVqpWu bOLEiZiZmZGamsrGjRtJT0/XazMxMZFRo0YRHx/P2bNnOXnypO5L0NnZmfj4eObPn0+/fv1ITk4m OTmZX375RRf/3nvvERMTQ1xcHKdPn8be3p7w8HBdua+vL3v27MHNzY3evXuzf7/x638rKys5f/48 fn5+zJkzhw0bNtCxY0cSExONilcUBa1WqzcodurUqUH/jhqNptZBcuLEiURERGBn4LnJtTEmXqvV Nrj92vxd+vf6fFNSUvD39693+4bipX+bt38fffRRNmzYUGOZMeNnXZpz/P3ll19042abNm2qtWlo fDY0vl5r44033uD06dO4uLjoJuPGjN+G8pszZw4JCQl4eXmxZcuWescbk//FixcJCwvj0Ucf5ezZ s6xcuVJXdiPfH4BuiUlJSQlFRUVUVVXpnaS8pq7PnzHlxnx+alLtjVOxsbG0b98eBwcH3ba77roL rVaLl5cXOTk5rF27FpVKRZcuXYzekWg4e3dvHDx8sHP1xMHDBwu7Vtg4uVJ06Tw2Tnfg0eN+ACq0 JRRmpGDn6knWmWMEGNn+yU1f03XMSzh6Xx047dt6Y9/WW6/OPU+9TOv2V1v06vMA/9uxTq9co9GQ kpLS4LVQKSkp+Pj41Fnn/fffx87OjhkzZlQrmzZtGh988AGKonDPPfewatUqXdmyZcuIjIwkJiam 2i9HXl4eGzZsIDs7GwsLC9q0acOgQYO4ePGirs4jjzwCXH0xw+nTp/H19eXAgQNGH9u8efPYunUr Go0GgPDwcLp168a8efN0dUxMTJg6dSr/+Mc/GDhwIDt27KBz584G29ZqtZiZmWFiYsLu3bspKioi ICBA70t7yJAh5OTk6MX179+fTz75BAcHB4KCgvj888+ZMmUKsbGxhIeH4+zsbPTxVVVVkZ6ezv79 +5kyZUq18uXLl2NtbU1oaGi9B9D6xPv6+vLzzz/z0EMP6Z0Rq+v4Dfk79O/1Pv30UwYOHIinp6fR 7RsbL/3bPP17jaOjI5cvX6a8vLzamShjxs+6NNf4a4gx47Mx42tERARdu3YFrp55rPe6yJvImPzT 09P55ptvGDBgAEC1K9sN/f4AWLFiBZs3b6a0tJSdO3fy/vvv89JLLzFixAi9enV9/owpr+vzUxe9 SWpycjJxcXGMGzdOr5KHh4fuZ1dXV/r27UtCQoJMUpuYSlXzz5dzMzmw7CMqtJdpfWcgKhNTrlwu NrrdwgupOHjUPUCZqP/8qFg5tKayorxandou9RqjvLwcM7O6X+l64sQJPvjggxrLPv74Y8aPH19j 2aBBg/j222+ZPn06n3zyiW4wAHR/3V7/l/1fpaenM3nyZIqLi+nWrRtqtZqCggIjjgqys7MpLCys tgyipr5KTU1lypQpDBs2zOgvHI1Gg6IolJWV8dNPPwHw22+/4erqqquzdevWOttYu3Yt77zzDkOH DqVXr168+eab1e5MrcuGDRt49913uffee7nzzjv1ytLS0pg5c2atl5EMqU/80KFDWb58OUOHDmXZ smW6s0KGjr8uLb1/rxcdHc2SJUuq3ThkLEPx0r/N07/XU6vVNU4CjBk/69Jc468hhsZnY8fX64/N xcWFsrIyo3O4mYzNX6PR6CaotWnI9wfAW2+9xdNPP03Xrl2pqKjg6NGjmJqa1li3ts+fMeV1fX7q ojsfn5GRwYYNGxg1apTBD5FKpdI7lS+aV8ynr+Pd70EGvbOIrk9OxrVTj2p1TM3MKSvKrzFe4+xG QXrKDedRUFBAeXn1yasx3N3dSUtLq7PO2rVrG3SZrV27duzcuZPAwEB69uxJdHS0rszZ2Znc3Fzd GtOajB49mtGjR7Nt2zYiIiK4//77q9WxtLSsdrYHrq4z02g0bNu2jVOnTun+O3LkiF69ZcuW8cAD D/Dqq6+ydOnSeq0B79ixo96Z3djYWDp16mR0vKenJytXriQmJobZs2dz7NixesUPHz6cY8eOkZaW Vu0M88aNGzE1NaVfv374+voyYsQIjh07hq+vL3l5eQbbrk/8V199xcCBA4mNjW3wZc+atOT+vebQ oUM8/fTTrF+/njvuuMPotusTL/3bvP1bWlpKVVVVjd/PxoyfdWmu8dcQQ+OzseOrIbWN3zdbY+Vv zPdHXd/P06dPZ+nSpTzyyCMsW7asxjp1ff6MKW/o58cErp6tWLNmDSNHjsTFxUWvQklJCevWrdN9 IeTn5/Pbb78REGDsxWRxsxVnXUD1/380FF44x+nta6vVcfDwIT81kZLsCwCUFv75Be/3wEgOf/s5 BenJ/99eBsd//LJeOZSUlODl5WXwr73a+Pj4UFhYqHcZ53q5ubl4enqyaNGiBrWvUqmYPHkyGzZs 4J133tGtnXF3d6dz587MnDkTRVFITEzUu1QFcO7cOd1flmfOnKnxpozAwECOHz9OamoqAFlZWbr9 Pvvsszz//PO6s6+ZmZl6g9Dbb7/N7t27iY2N5cEHH6z3sT3zzDO8//77lJeXc+nSJSIjI5kwYYLR 8bt376awsBC4un5qzZo1uhtR6sPNzY38fP0/hF544QXOnDmj+2/dunV06tSJM2fO6J0dURSFvn37 VrvEZGw8XB2b3Nzc6p23IS25f+HqpC40NJS1a9fWeomvtv41Nh6kf5u7f7dv3653w8z1DI2fhjTX +GuIofHZmPHVGLWN3zdbY+RvzPdHXd/PRUVFBAYGMmzYMN5//30uXLhQYxt1ff4Mld/I50ddUVHB 119/jUqlYvXq1VRWVgJXf2HHjBmDjY0Nd955J99//z1FRUWYmJjQs2dPo9c7iJuv54Q3iV+/hCNR 83Fo54vf4JGk7t+pV0fj3JauYZPZOv1pTM0tsXFyJfitBZiYmuIbPBylspLo2S9zpVSLpX0rOg03 /ksCwNzcHE9PT3x9fRt0DCqVikmTJjFnzhz+85//VCtXFKVB7f7VtUXm1w/GUVFRjB8/Hnd3d4KC gnjqqaf0FufPmzePiIgI3n77bTp27Mizzz5b7VmH3t7efPjhh9x3331YWVnRrl07fvrpJ9RqNRER EcyaNYtevXqhUqmwt7dn+vTpuuUyzzzzzA09O+/pp58mJSWFzp07Y2ZmxqxZs+p1Jik+Pp4XXniB 4uJifHx82Lp1a53LH2pTUlKCpaVlveOuMTU15YcffiAnJ6dBd5JbWlpSXGz8MhdjteT+vXz5MoMH D8bU1JThw4frLmPec8891S6T19S/9YmX/m2+/lUUhTlz5tR6udTQ+GlIc46/hhganw2Nr8aoa/y+ 2W40f2O+P+r6fra1tWXq1KnA1c/wu+++W62Ooc+fMeUNpVJu8NN3/QL3miw0cDfoNAO7N9S+ra3t LR1/O6moqKBv37588MEHN/XB+H9HOTk5PPTQQw1e29lYfH19OXPmTI1lY8eOZciQIYwaNapBbZeW lnLHHXdw6dIlLCws6h3/2muv4e3tzQsvvFDvWOlfw6R/63Yz+3fmzJmcO3euzkdz3ej4KeOvqI2h z58xn8+Guvl/JghhJDMzMzZt2sTTTz/Nvffe2+AnBdyqkpKSmDjx6vNthw4dyqOPPtok+/300091 b6G7dqWlJpMmTSI8PJxt27YxbNiweuc3a9YsRowYUe8v+Llz53L48GEyMjJ49dVX6xV7Penfmkn/ Gudm9e/x48c5ceIEX331VZ3t1DR+/v7777VeAs7Ozta7QUbGX1ETQ58/Yz+fDSVnUlt4vBC3g61b t/Lbb78xY8aMWu8sFQ0n/XtzSf8KcXPIJLWFxwshhBBC3I7kOVJCCCGEEKLFkUmqEEIIIYRocWSS KoQQQgghWhyZpAohhBBCiBZHDVffTb5z506ysrKwsLAgODi42hulEhMT2blzJ0VFRdjb2zNw4MB6 vR9WCCGEEEIIY6kVRSEmJobg4GDc3Nw4e/YsUVFRTJkyRXfneUZGBj/99BNPPPEELi4u5OTk6N6c IYQQQgghRGNTq1QqRo8erdvg4+ODi4sLly5d0k1SY2JiGDhwIC4uLgANemWhEEIIIYQQxqr2xqmq qiry8vJwcnLSbbt06RJ9+/blp59+IisrCw8PD+69917Mzc2bNFkhhBBCCHF7qHbjVGxsLO3bt8fB wUG3raioiF27dtG1a1dGjRpFTk4OO3fubNJEhRBCCCHE7UNvkpqcnExcXBxDhgzRq2RjY8MjjzyC q6srVlZW9OzZk8TExCZNVAghhBBC3D50k9SMjAw2bNjAqFGj0Gg0epXatGlDdna27v//Wi6EEEII IURjMgFIS0tjzZo1jBw5Undz1PV69uxJdHQ0paWlKIrCvn376NChQ5MnK4QQQgghbg/qiooKvv76 a1QqFatXr6ayshIANzc3xowZA4Cvry+FhYUsX76cyspKvLy8GDhwYHPmLYQQQgghbmEqRVGUG2mg qKiozvKFdnZ1lk8zsHtD7V97TNatGi+EEEIIcTuS16IKIYQQQogWRyapQgghhBCixZFJqhBCCCGE aHFkkiqEEEIIIVocmaQKIYQQQogWRyapQgghhBCixZFJqmh08euXsv+LWc2dhhBCCCH+xtQA6enp 7Ny5k6ysLCwsLAgODiYgIACAkpIS5s2bpxdUWVmJRqNhypQpTZ+xEEIIIYS45akVRSEmJobg4GDc 3Nw4e/YsUVFRTJkyBVtbW2xsbHjjjTf0gtasWUOnTp2aKWUhhBBCCHGrU6tUKkaPHq3b4OPjg4uL C5cuXarxbUgnTpxArVYTGBjYlHne1i7nZrLro8mETI/k4IrZZByNpVU7XwbPWApAVWUl8euWkLx3 CygKzgFd6TFuGmZWNro2kvf+zPENyyktyMXKwYm7Rz6HR/cBAJRfLubQl5+QcXQfJqZq7hz4KJ2G j0dlYmrU/suKC/h9SQQXjx/A1sUdjYs7Fhp7vfz3Rc6gIC0JEzNzWrcPpMuTL2Lr4q6rc+XKFbp3 705QUBArVqy42V0qhBBCiBZO/dcNVVVV5OXl4eTkVK2yoijs3r2bkSNHNkly4k/avGx+nfsGHQaN oPcz71B++c/XrR79LpLMhCM8NGcNZhZWHPxyDoe//ZyeE94EIGXfNg5/M5f7p/0XR29/CtKTyU0+ rYuPjZyBmbWG4Qu3UKEtYWfEC5haWHLXw/80av+xke9ham7JiMXbqdCWsPuTV/UmqUe/W4TGuS0h 4QsASDu4W28CDVBaWkpSUhLm5uaN23FCCCGE+FuqduNUbGws7du3x8HBoVrlpKQkbG1tadOmTZMk J/50OTeTTqET8Ow9CLWlFdaOzrqyhC2r6Bo2BTNLa1Cp6BQ6kbSDu3XlJzd9TdcxL+Ho7Q+AfVtv vPsNAaC8pIhzv/9Ct3+9hompGguNPUFPvMCZHeuN2n95cSGp+3fRc/wbmJqZY2nXCre7e+vFWrd2 4dLJOC6ejKOqqhKPHvdjaddKr45GoyElJYU9e/Y0Wp8JIYQQ4u9L70xqcnIycXFxjBs3rsbKiYmJ eHt7N0liQp/a0po77upebXtZYR7l2hJ+m/+23nYLWzvdz4UXUnHw8Kmx3eLMdCztWmFurdFts3Nt R3FmulH7L8pMx9K+FeYau2pl13QOnYCFxp7D38ylICMFj2796Ro2RW+iDeDo6FhrG0IIIYS4vegm qRkZGWzYsIEnn3wSjUZTY+XU1FRCQkKaLDlhmIWtA2aW1gx6ZxE2Tq411tE4u1GQnkIrzw7Vymza uFJamEeFtkR3Cb7o0nls2rgZtX8re0fKigqorCjD1MyixjoqE1P8H3wC/wefoKy4gP1LPyR28QcE v6n/1IiCggKsrKzkkr8QQgghrl7uT0tLY82aNYwcORIXF5daK+fl5dV4M5VoRioVfoMf5/clEZRf LgagtCCX3OQEXRW/B0Zy+NvPKUhPBqA4K4PjP34JgIXGnnY9BhL31WcoVZWUXy7mj9UL8Q0ZbtTu rVu70MqrA/Frl4CiUHQxleSYLXp1Dq/6nPy0pKv7s7HD3r09KIpenZKSEry8vBgwYEBDekEIIYQQ txh1RUUFX3/9NSqVitWrV1NZWQmAm5sbY8aM0VWsrKxEq9VibW3dXLmKWnQJm8yx9V+w5Y0wUKkw t9bQecQk3RpU3+DhKJWVRM9+mSulWiztW9Fp+ARdfJ/n3+Pgitmsf+4fmJia4jPgYe56+Cmj93/f yx+zb8G7rJ0UgqOXP+0HPMTlnExdeZs7O3FwxWyKsy6gVFVh59aOXhOn67Vhbm6Op6cnvr6+N9gb QgghhLgVqBTlL6e06qmoqKjO8oV2ta9VBJhmYPeG2jd0ZvfvHi+EEEIIcTuS16IKIYQQQogWRyap QgghhBCixZFJqhBCCCGEaHGqvXFKtCyyplUIIYQQtyM5kyqEEEIIIVocmaQKIYQQQogWRyapQhhJ UaqaOwUhhBDitqEGSE9PZ+fOnWRlZWFhYUFwcDABAQG6SpWVlWzZsoXk5GQURcHf35/BgwejUqma LXFhnLKifFY/fR+9Jr2F3wOjANj7+Vtknj7K8AWbmzm7v4+8c//j4JefMPjdJc2dihBCCHFbMFEU hZiYGIKDg3nllVd48MEHWb9+vd4NOwcPHqS4uJgXXniB5557jgsXLnDixIlmTFvUh4WtAyn7tgNQ daWCrDPHmjmjv5/SwvzmTkEIIYS4rahVKhWjR4/WbfDx8cHFxYVLly7p7hzXarW0a9cOU1NTTE1N 8fHxMXjXuWg5zG3sKC3IpbQgl+zE49i39SI/7ayuvKqykvh1S0jeuwUUBeeArvQYNw0zKxsA8tOS OPb9F+QknaS8pJC2XfrR65npmJpZAHA5N5N9kTMoSEvCxMyc1u0D6fLki9i6uAOwMrQzT3wZg4Wt AwBHouZzpfQy3ce+rovf9dFkQqZHcnDFbDKOxtKqnS+DZyw1mN/FE4c4uXElV8q0FGddoMfY19m/ 7CPs3DwZ9PYio45v8+uj6f3sOxz/YRkXjh1A49yW/q/MxvYOD0oLctk+YyKlhXmUlxSx/rkhANi6 eOjyA7hy5Qrdu3cnKCiIFStW3LR/SyGEEOJ2UW1NalVVFXl5eTg5Oem2de7cmbi4OP744w9KSkpI TEwkMDCwSRMVDXel9DKevUJI3b+Tc7E7cAvqq1d+9LtILp08xENz1vDYvE2YW2s4/O3nuvKiC6l4 9R3CsM/WM3zhz+SfT+J/29ddF78IjXNbQiO38tjnG/HuO0Q3ATSWNi+bX+e+QbseAwld+DP9JkcY nV/G0Vh6jH8TJ99OHPthOQ99vIrsxOOUZF80Kh4gNnIGHR8bz2PzNmLl0Jpj3y8DwNLekWGfrafn xHCcA7oQGrmV0MitehNUgNLSUpKSkjh58mS9jlsIIYQQNas2SY2NjaV9+/Y4ODjottnb2+Pq6srh w4f59NNPadu2Lfb29k2aqGi4yooyvO8bSuqBXeSmnMbZ72698oQtq+gaNgUzS2tQqegUOpG0g7t1 5R497sejW38qy8soOJ+Enaun3pIB69YuXDoZx8WTcVRVVeLR434s7VrVK8fLuZl0Cp2AZ+9BqC2t sHZ0Njo/e3dvHDx8sHP1pG3XfljYtcLGyZWiS+eNigfo8uRkWrcPwMLWAa8+D1CQnlyv/DUaDSkp KezZs6decUIIIYSomd7D/JOTk4mLi2PcuHF6lb799lt69uyJv78/ubm5bN68mdjYWHr37t2kyYqG s3fzorQwj7Zd+sF1N7yVFeZRri3ht/lv69W3sLXT/Xw5N5MDyz6iQnuZ1ncGojIx5crlYl1559AJ WGjsOfzNXAoyUvDo1p+uYVP0JpqGqC2tueOu7tW2G5PfNdffx3ftZ2PjTdR//ipYObSmsqLc6Nyv cXR0rHeMEEIIIWqm+2bOyMhgw4YNPPnkk2g0Gl0FrVbLpUuX8Pf3B65+EQ8aNIhNmzbJJPVvpv8r szHX2Osug8PVm6rMLK0Z9M4ibJxca4yL+fR1AoaG4dl7EABJuzeSun+XrlxlYor/g0/g/+ATlBUX sH/ph8Qu/oDgN+cBYKI2o7QwT7cmtepKhdE5G5PfzYy/xtTMnLKium+eKigowMrKCnNz8wbvRwgh hBBXmQCkpaWxZs0aRo4ciYuLi14FS0tLzM3NOX36NIqiUFVVRWJiolzu/xuyvaMdFpq//LupVPgN fpzfl0RQ/v9nR0sLcslNTtBVKc66gMrk6sqQwgvnOL19rV4Th1d9Tn5aEgAWNnbYu7cHRdGV27l5 krR7E5UVZZw/tIezMfV49JUR+d3U+P/n4OFDfmoiJdkXrrZRmKdXXlJSgpeXFwMGDKhXu0IIIYSo mbqiooKvv/4alUrF6tWrqaysBMDNzY0xY8Zw7e7/7du3s337dhRFwc3NjaFDhzZz6qKxdAmbzLH1 X7DljTBQqTC31tB5xCQcva+ePe854U3i1y/hSNR8HNr54jd4JKn7d+ri29zZiYMrZlOcdQGlqgo7 t3b0mjhdV95j7Ovsi5xB0u6NePYeRNewKfWaJBrK72bHA2ic29I1bDJbpz+NqbklNk6uBL+1ABNT UwDMzc3x9PTE19fX6DaFEEIIUTuVolx3yqsBDD2KaqFd9bWD15tmYPeG2r/2mCyJF0IIIYS4dchr UYUQQgghRIsjk1QhhBBCCNHiyCRVCCGEEEK0OGrDVcTfmaxpFUIIIcTfkZxJFUIIIYQQLY5MUoUQ QgghRIsjk1RRb/Hrl7L/i1n1jlOUqpuQjfH27t1LXFycwXoRERG8+OKL9W6/qqp5j08IIYS4lagB 0tPT2blzJ1lZWVhYWBAcHExAQICuUmFhIZs3byYrKwsrKyseeOABPD09my1p8feTd+5/HPzyEwa/ u6TZcjh69CgODg7cc889jd52fHw8r776Kjt27Gj0toUQQojbkVpRFGJiYggODsbNzY2zZ88SFRXF lClTdDfVfP/999x11108+eSTZGdn89VXXzFx4kS56UYYrbSw7vfe30xlZWW89dZbREVFUVlZyfbt 25k7dy6tWrVqtH1kZ2c3WltCCCGEAPW1155e4+Pjg4uLC5cuXcLW1pbS0lIuXLjAv/71LwCcnJzo 2rUrhw4d4v7772+uvEUTKisu4PclEVw8fgBbF3c0Lu5YaOx15flpSRz7/gtykk5SXlJI2y796PXM dEzNLCgtyGX7jImUFuZRXlLE+ueGAGDr4sHgGUsBqKqsJH7dEpL3bgFFwTmgKz3GTcPMyka3jytX rtC9e3eCgoJYsWJFvfJftmwZ+/fv58yZM5ibm7N8+XK0Wq1ukpqbm8vzzz9PdHQ07du3p3379jg6 OuriT5w4waxZs4iLiyMvL48HH3yQyMhILKEwn0sAACAASURBVC0tyczMJCQkhKysLPLz8/H29gau /h798ssvutxnzpxJVFQUiqLQr18//vvf/8ofeUIIIUQdqq1JraqqIi8vDycnJ922iooKysvLdf/v 7OxMVlZW02Qoml1s5HuYmKoZsXg7A9+cx+XcTL3yogupePUdwrDP1jN84c/kn0/if9vXAWBp78iw z9bTc2I4zgFdCI3cSmjkVt0EFeDod5FcOnmIh+as4bF5mzC31nD428/19lFaWkpSUhInT55s0DGo VCoURUGtVjNp0iTc3Nx0ZRMnTsTMzIzU1FQ2btxIenq6XmxiYiKjRo0iPj6es2fPcvLkSRYvXgxc /V2Ij49n/vz59OvXj+TkZJKTk3UTVID33nuPmJgY4uLiOH36NPb29oSHhzfoOIQQQojbRbVJamxs LO3bt8fBwQEAS0tLXF1d2b9/P2VlZSQlJbFz506Ki4ubPFnR9MqLC0ndv4ue49/A1MwcS7tWuN3d W6+OR4/78ejWn8ryMgrOJ2Hn6knWmWNG7yNhyyq6hk3BzNIaVCo6hU4k7eBuvToajYaUlBT27NlT 72OYMGEC/v7+eHl5ER4eTkFBga4sLy+PDRs28Pnnn2NhYUGbNm0YNGiQXvwjjzzCww8/TGlpKSdP nsTX15cDBw4Yvf958+bx4YcfotFoUKlUhIeHs3HjxnofhxBCCHE70XuYf3JyMnFxcYwbN06v0uOP P050dDSrVq3C3d2de++9l8TExCZNVDSPosx0LO1bYa6xq7XO5dxMDiz7iArtZVrfGYjKxJQrl437 I6asMI9ybQm/zX9bb7uFbfX9XX8Jvj7Mzc1ZsmQJL730Eh9//DF+fn5s27aNu+++m+TkZNq0aVPn +tT09HQmT55McXEx3bp1Q61W601065KdnU1hYSFjx45tlGMRQgghbhe6SWpGRgYbNmzgySefRKPR 6FVycHDgscce0/3/tm3bcHFxabosRbOxsnekrKiAyooyTM0saqwT8+nrBAwNw7P31TOQSbs3krp/ l14dUzNzyoqq3zxlYeuAmaU1g95ZhI2Ta525FBQUYGVlhbm5eYOOJTAwkJUrV/Laa6+xePFiFi5c iLOzM7m5uZSWlmJpaVlj3OjRo5k8eTIjRowAYOXKlWzYsEGvjqWlJTk5OdViW7dujUajYdu2bbRr 165BeQshhBC3IxOAtLQ01qxZw8iRI2ucfKakpFBWVgbA2bNnOX78ON26dWvaTEWzsG7tQiuvDsSv XQKKQtHFVJJjtujVKc66gMrk6sqRwgvnOL19bbV2HDx8yE9NpCT7AgClhXlXC1Qq/AY/zu9LIij/ /7OvpQW55CYn6MWXlJTg5eXFgAED6n0MkydPZtGiRWRkZHD27FkOHDhAhw4dAHB3d6dz587MnDkT RVFITExk1apVevHnzp3D1NQUgDNnzujWo14vMDCQ48ePk5qaCqBbs61SqXj22Wd5/vnndWdfMzMz OXLkSL2PQwghhLidqMrLy5U5c+agUqkwNzensrISADc3N8aMGQPA/v37OXToEOXl5Tg6OvLggw/i 7OwMGH43/EK72i8TA0xTlDrLb/Td8xJ/Y/FwdeK5b8G7FF1Kw9HLH+fArlzOyaTnhDcBSDu4m/j1 S7hSqsWhnS/uXe8ldf9O7p82V6+dEz9+ScLPUZiaW2Lj5ErwWwswMTWlqvIKx9Z/QfLen0Glwtxa Q+cRk3C/5z5dbEVFBd27d+fuu+9m5cqVBnO+XlJSErNnz2bLli04ODgwefJkxo0bpzfxHD9+PElJ SQQFBXHvvfeSnp7OvHnzANi4cSMRERGUlJTQsWNH/vGPf/DDDz/www8/6O3nk08+Yf78+VhZWdGu XTt++ukn1Go1FRUVzJo1i6ioKFQqFfb29kyfPp2hQ4fW6ziEEEKI24lKUQzMEg2QSeqtHX8rWbBg AQ4ODoSFhTV3KkIIIYQwQG24ihC3BldX12rrrYUQQgjRMskkVdw2hg8f3twpCCGEEMJI1Z6TKoQQ QgghRHOTSaoQQgghhGhxZJIqhBBCCCFaHJmkCiGEEEKIFkcmqcJouSmn+W78QLITj9dZL379UvZ/ MavR968oVXWWG8qvJPsC29+bxHfj72fjq4+T8ce+esU3t7179xIXF1dr+dGjR3F1deXgwYN1thMR EcGLL77Y2OlRVVX3v4+h/FJTUxk0aBB33HEHQUFBbNu2rV7xQgghbi1quPrlEB0dTU5ODiqVip49 e9KnTx9dpaqqKnbs2MHp06cxNTWlV69e3HPPPc2WtGge1q3a4Nk7BJvWTf9K3Lxz/+Pgl58w+N0l tdYxlN+hlZ9i39aL4PB5oMBfHxHcnMdnjKNHj+Lg4FDr756rqyuhoaG4u7s3cWYQHx/Pq6++yo4d O2qtYyi/qVOn4ufnx6ZNm1AUpdq/T3MenxBCiKanBkhOTiY4OBh3d3eys7NZvHgxbm5ueHl5AbBv 3z4KCwv597//TVlZGV9++SWOjo54e3s3Z+6iiVnaO9JzQniz7Lu0MN9gHUP55Z37H33//QGmZhYN im8uZWVlvPXWW0RFRVFZWcn27duZO3curVq10qvn7OzM/PnzmyXH7Oxsg3UM5RcfH8+KFSuwtLRs ULwQQohbixqgf//+ug1OTk54eHig1Wp12w4fPszo0aMxMTHBysqKPn36cPjwYZmk3ia2z5hI0aU0 AEqyLzLs0/U4ePjoysuKC/h9SQQXjx/A1sUdjYs7Fhp7XXlVZSXx65aQvHcLKArOAV3pMW4aZlY2 AGx+fTS9n32H4z8s48KxA2ic29L/ldnY3uFBaUEu22dMpLQwj/KSItY/NwQAWxcPBs9YalR+h776 lLSDuym6lMbuOS9jojarV7yh/C/nZrLro8mETI/k4IrZZByNpVU7X137AFeuXKF79+4EBQWxYsWK evX/smXL2L9/P2fOnMHc3Jzly5ej1Wp1k9SQkBCSkpIASEtL4+jRo9x11126+NzcXJ5//nmio6Np 37497du3x9HRUS+3mTNnEhUVhaIo9OvXj//+97+6t5F1796dxYsX89FHH7Fr1y68vb1ZvXo1Pj4+ ZGZmEhISQlZWFvn5+boxwcfHh19++cWo/KZOncqmTZtISkoiNDQUc3PzesUbyj89PZ1HHnmEn3/+ mZdffpkdO3bQqVMnXftCCCFaJt2aVEVRKC4u5uDBg2i1Wnx9fYGrl/oLCwtxcnLit99+IyEhAWdn Z3Jzc5stadG0Bs9YSmjkVkIjt2Jp51itPDbyPUxM1YxYvJ2Bb87jcm6mXvnR7yK5dPIQD81Zw2Pz NmFureHwt5//pY0ZdHxsPI/N24iVQ2uOfb8MuHp2c9hn6+k5MRzngC66PK6fABrKr9s/X+GxeRvR tGlL8FsL6x1vTP7avGx+nfsG7XoMJHThz/SbHKFXXlpaSlJSEidPnqytm+ukUqlQFAW1Ws2kSZNw c3PTlf3yyy8kJyeTnJxMmzZtqsVOnDgRMzMzUlNT2bhxI+np6Xrl7733HjExMcTFxXH69Gns7e0J Dw+v1sYbb7zB6dOncXFxYdasq2uOnZ2diY+PZ/78+fTr10+Xx/UTQEP5zZkzh4SEBLy8vNiyZUu9 443J/+LFi4SFhfHoo49y9uxZVq5cWVd3CyGEaAF0k9SEhAQiIyOJjo5m2LBhqNVXX0Z15coVTExM UKlUpKSkcOHCBczMzCgrK2u2pEXLUV5cSOr+XfQc/wamZuZY2rXC7e7eenUStqyia9gUzCytQaWi U+hE0g7u1qvT5cnJtG4fgIWtA159HqAgPbkJj6JuxuR/OTeTTqET8Ow9CLWlFdaOznrlGo2GlJQU 9uzZU+/9T5gwAX9/f7y8vAgPD6egoMDo2Ly8PDZs2MDnn3+OhYUFbdq0YdCgQXp15s2bx4cffohG o0GlUhEeHs7GjRv16kRERNC1a1dat27NyJEjSUhIqPdx3CzG5J+enk54eDgjRozAxsaGtm3bNlO2 QgghjKV7LWpAQAABAQHk5uaybt06+vTpQ8eOHTE3NweuTlbDwsKAqzdaXbuUJm5vRZnpWNq3wlxj V2N5WWEe5doSfpv/tt52C1v9+ibqP9/Qa+XQmsqK8sZPtgGMzV9tac0dd3Wvs63rL7HXh7m5OUuW LOGll17i448/xs/Pj23btnH33XcbjL129vGv61evyc7OprCwkLFjx9aZq5mZme5nFxeXFvNHqrH5 azQaBgwY0ISZCSGEuFHqv25wdHQkKCiIU6dO0bFjR+DqJb309HQ8PT0BOH/+PM7Ozn8NFbchK3tH yooKqKwoq/GGJAtbB8wsrRn0ziJsnFwbvB9TM3PKigzfPNXYGit/gIKCAqysrHR/+NVXYGAgK1eu 5LXXXmPx4sUsXLjQYMy1pTmlpaU13pDUunVrNBoN27Zto127dg3KC8DS0pKcnJwGxzdUY+UvhBCi 5THRarWsXbtW9wWTl5fHiRMn9C6HdevWjT179lBZWalbt9q1a9fmylm0INatXWjl1YH4tUtAUSi6 mEpyzJY/K6hU+A1+nN+XRFB+uRiA0oJccpPrd7nYwcOH/NRESrIvXG2jMK/RjqFOjZR/SUkJXl5e DTqbN3nyZBYtWkRGRgZnz57lwIEDdOjQwahYd3d3OnfuzMyZM1EUhcTERFatWqUrV6lUPPvsszz/ /PO6ZQSZmZkcOXKkXjkGBgZy/PhxUlNTAcjKyqpXfEM1Vv5CCCFaHrWVlRV+fn78+OOP5OfnoygK QUFB9OrVS1cpKCiI/Px8IiMjMTExISQkBBeXlvksSdH07nv5Y/YteJe1k0Jw9PKn/YCHuJzz581T XcImc2z9F2x5IwxUKsytNXQeMQlHb3+j96FxbkvXsMlsnf40puaW2Di5EvzWAkxMTW/GIelpjPzN zc3x9PTU3ZBYH1OmTGH27NlERETg4ODA5MmTGTdunNHxUVFRjB8/Hnd3d4KCgnjqqaf0bp6KiIhg 1qxZ9OrVC5VKhb29PdOnT6dLly5G78Pb25sPP/yQ++67DysrK9q1a8dPP/2kW9t+MzVG/kIIIVoe lfLXJ2bXU1FRUZ3lC+1qXqt4zTQDuzfUvqG1sRJ/Y/Gi5ViwYAEODg66teFCCCHErezmn+YQQjQK V1dXNBpNc6chhBBCNAmZpArxNzF8+PDmTkEIIYRoMiaGqwghhBBCCNG0ZJIqhBBCCCFaHJmkCiGE EEKIFkcmqUIIIYQQosWRSapoMXJTTvPd+IFkJx6/Ke0rStVNafeavXv3EhcXd1P3UZejR4/i6urK wYMHb0r7VVU3t/+EEEKI65kApKamsnLlSj799FM+++wz9u3bp1eppKSEXbt2sXDhQr755ptmSVTc +qxbtcGzdwg2rRv/RRF55/7HjvefbfR2r3f06FESEqq/ieqxxx7DyckJLy8vPD09GTx4MMePN/5E 3NXVldDQUNzd3Ru97fj4eB544IFGb1cIIYSojRogOTmZ4OBg3N3dyc7OZvHixbi5ueHl5QWAiYkJ bm5ulJeXk52d3Zz5iluYpb0jPSeE35S2Swvzb0q7AGVlZbz11ltERUVRWVnJ9u3bmTt3Lq1atdLV +fjjjxk/fjyKorBw4UJGjx7NsWPHGjUPZ2dn5s+f36htXiO/90IIIZqaCUD//v11Z1+cnJzw8PBA q9XqKllZWeHv74+bm1vzZCma1ebXR3M25id+futfrBk3gF2zXqSsME9Xfjk3k82vP0FpYR6//vdN 1owbwPYZE3Xl5ZeL2bdwBuueGcz3z/+D+HVLUKoqdeXbZ0xk/XNDWP/cEL56PIj8tCS9/VdVVvLH mkh+ePFhfvj3Q/y24B0qtCV6dZL3/sym1x5n7cRgNk8dRdrB3QCUFuSy8eVQfp37Bpmnjuj2c31+ AFeuXKFLly6MHTu23v2zbNky9u/fz5kzZzh//jx9+/bV+/25nkqlIjQ0lISEBN3l8/T0dLp160ZW VhZjxozBxcWFkJAQXUxBQQETJkygXbt2+Pj4MHPmTCor/+y/kJAQvL298fb2Rq1Wc+LEiWrHNmPG DPz8/OjQoQPjxo2r9iayqKgounTpQtu2bbnnnnvYuHEjAJmZmXTu3JmwsDD27t2r28/1+QkhhBA3 g+5h/oqiUFJSwqlTp9BqtQ16x7i4dSXt3siA1z7BwtaBmM+mcejrz+j7wvu6cm1eNr/OfYMOg0bQ +5l3KL/85yQoNnIGZtYahi/cQoW2hJ0RL2BqYcldD/8TgMEzlurqfjd+YLV9H/0uksyEIzw0Zw1m FlYc/HIOh7/9nJ4T3gQgZd82Dn8zl/un/RdHb38K0pPJTT4NXD07O+yz9Zz7/RdOb/uOwe8uqfH4 SktLSUpKwtzcvEH9o1KpUBQFtVrNpEmTaq1XVVXF8uXL6dGjByYmfy4Jv3jxImFhYUyaNInFixeT n//nmd+JEydib29PUlISRUVFDB06FGtra1555RUAfvnlF11dV1fXavt87733+O2334iLi8PGxoZX XnmF8PBw5s2bB8B3333Hm2++yYYNGwgKCiIhIYE//vgDuHp2Nj4+nvXr17No0SJ27NjRoP4RQggh 6kv3LZmQkEBkZCTR0dEMGzYMtVpeRiX+1PGxcVi1aoOJ2gyf+x8h/fBevfLLuZl0Cp2AZ+9BqC2t sHZ0BqC8pIhzv/9Ct3+9hompGguNPUFPvMCZHeuN3nfCllV0DZuCmaU1qFR0Cp2oO1MKcHLT13Qd 8xKO3v4A2Lf1xrvfkHodn0ajISUlhT179tQrDmDChAn4+/vj5eVFeHg4BQUF1epMmzYNLy8vvL29 OXToEKtWrdIrT09PJzw8nBEjRmBjY0Pbtm0ByM/P5/vvv+eTTz7BzMwMR0dH3n//fZYuXVptH7WZ N28eH374IRqNBpVKRXh4uO5MKcBnn33GrFmzCAoKAsDf358nnnii3v0ghBBCNCbdTDQgIICAgABy c3NZt24dffr0oWPHjs2Zm2ihHDx8KCvWn4ipLa25467u1eoWZ6ZjadcKc+s/3zlv59qO4sx0o/ZV VphHubaE3+a/rbfdwtZO93PhhVQcPHzqcwg1cnR0bFCcubk5S5Ys4aWXXuLjjz/Gz8+Pbdu2cffd d+vqXFuTWhuNRsOAAQOqbU9OTsbJyQl7e3vdtjvvvJPk5GSjcsvOzqawsLDaMobrj/XMmTPcdddd RrUnhBBCNJVqp0sdHR0JCgri1KlTMkkVNSq6kIrGua1RdW3auFJamEeFtgQzK5ur8ZfOY9PGuPXN FrYOmFlaM+idRdg4Vb+UDaBxdqMgPYVWnh1qbcfUzJyyorpvniooKMDKyqrBl/wDAwNZuXIlr732 GosXL2bhwoUNaud6np6eZGdnU1RUhK2tLQBnz57V3dRoSOvWrdFoNGzbto127drVWMfLy4vTp0/T uXPnWtuxtLQkJyen3vkLIYQQDWWi1WpZu3at7gsoLy+PEydO6C43CgGQsm87lRVllF8u5uh3i/AN fsyoOAuNPe16DCTuq89Qqiopv1zMH6sX4hsy3Lgdq1T4DX6c35dEUH65GLh6M1Ru8p+PevJ7YCSH v/2cgvSrZxeLszI4/uOXes04ePiQn5pISfaFq21cd+MXXH3MmpeXV41nMw2ZPHkyixYtIiMjg7Nn z3LgwAE6dKh9wlwfjo6OPPLII7z++utUVlZSUFDAu+++W+dZ2eupVCqeffZZnn/+ed0yhMzMTI4c OaKr89xzzxEeHq57fNa5c+eYM2eOXjuBgYEcP36c1NRUALKyshrj8IQQQohaqa2srPDz8+PHH38k Pz8fRVEICgqiV69eukrr1q3j/PnzlJeXU15ezty5c7Gzs2PcuHHNmLpoSmoLS356/UnKivPxvnco gQ8/ZXRsn+ff4+CK2ax/7h+YmJriM+Bh7qpHfJewyRxb/wVb3ggDlQpzaw2dR0zSrUH1DR6OUllJ 9OyXuVKqxdK+FZ2GT9BrQ+Pclq5hk9k6/WlMzS2xcXIl+K0FmJiaAlcv2Xt6ejbohsEpU6Ywe/Zs IiIicHBwYPLkyY36u7Fs2TJefvll2rdvj1qt5p///KfupiljREREMGvWLHr16oVKpcLe3p7p06fT pUsXAMaPH8+VK1cYPnw4JSUltGnThjfffFOvDW9vbz788EPuu+8+rKysaNeuHT/99JOsXRdCCHHT qBRFUW6kgb8+yuavFtrZ1Vk+zcDuDbV/7RKoxN+ceLj6CKp7nnoZ1049DNa9EVWVlUQ91ZtH5v5g 9HKClmTBggU4ODgQFhbWLPu/cuUK9vb2HD9+HG9v72bJQQghhGgs8lpUYaQb+lumTsWZGQBcPH4A tYUV1jfhjVNNwdXVlTZt2jT5flNSUgCIjo7GxsbmprxxSgghhGhqcq1ONKvLOZf49fM30eZmYWph yb1TZmFi+vf8WA4fbuQ620Z0/vx5nnrqKTIyMrC2tubrr7/GzMysyfMQQgghGptc7pf4OsuFEEII IZrD3/OU1d/IjU4CmzteCCGEEKI5yJpUIYQQQgjR4sgkVQghhBBCtDgySRVCCCGEEC2OGiA1NZXo 6GhycnJQqVT07NmTPn366Cqlp6ezc+dOsrKysLCwIDg4mICAgGZLWgghhBBC3NrUAMnJyQQHB+Pu 7k52djaLFy/Gzc0NLy8vFEUhJiaG4OBg3NzcOHv2LFFRUUyZMkVuyhFCCCGEEDeFGqB///66DU5O Tnh4eKDVaoGr7/4ePXq0rtzHxwcXFxcuXbokk1QhhBBCCHFT6B5BpSgKJSUlnDp1Cq1WW+s7zKuq qsjLy8PJyanJkhRCCCGEELcX3SQ1ISGBzZs3oygKTz31FGp1zY9QjY2NpX379jg4ODRZkkIIIYQQ 4vaim4kGBAQQEBBAbm4u69ato0+fPnTs2FGvcnJyMnFxcYwbN67JExVCCCGEELePao+gcnR0JCgo iFOnTultz8jIYMOGDYwaNQqNRtNkCQohhBBCiNuPiVarZe3ateTk5ACQl5fHiRMnaNu2ra5SWloa a9asYeTIkbi4uDRXrkIIIYQQ4jahtrKyws/Pjx9//JH8/HwURSEoKIhevXoBUFFRwddff41KpWL1 6tVUVlYC4ObmxpgxY5ozdyGEEEIIcYtSKYqi3EgDRUVFdZYvtLOrs3yagd0bat/QY7CaO14IIYQQ QtSfvBZVCCGEEEK0ODJJFUIIIYQQLY5MUoUQQgghRIsjk1QhhBBCCNHiyCRVCCGEEEK0ODJJFUII IYQQLY5MUoUQQgghRIujBkhNTSU6OpqcnBxUKhU9e/akT58+ukqGyoUQQgghhGhMaoDk5GSCg4Nx d3cnOzubxYsX4+bmhpeXF8aUCyGEEEII0ZjUAP3799dtcHJywsPDA61Wq9tmqFwIIYQQQojGpL72 g6IolJSUcOrUKbRaLb6+vnoVDZULIYQQQgjRWHST1ISEBDZv3oyiKDz11FOo1Wq9iobKhRBCCCGE aCy6mWZAQAABAQHk5uaybt06+vTpQ8eOHTG2XAghhBBCiMZS7RFUjo6OBAUFcerUqRoDDJULIYQQ Qghxo0y0Wi1r164lJycHgLy8PE6cOEHbtm0BMFQuhBBCCCFEY1NbWVnh5+fHjz/+SH5+PoqiEBQU RK9evQAwVC6EEEIIIURjUymKotxIA0VFRXWWL7Szq7N8moHdG2rf1ta2RccLIYQQQoj6k9eiCiGE EEKIFkcmqUIIIYQQosWRSaoQQgghhGhx5In8N5msaRVCCCGEqD85kyqEEEIIIVocmaQKIYQQQogW Ryapt4HNr4/mwrH9BuspSlUTZCOEEEIIYZgaIDU1lejoaHJyclCpVPTs2ZM+ffrUGBAVFUVRURGT Jk1q0kTFzZV37n8c/PITBr+7pLlTEUIIIYS4OklNTk4mODgYd3d3srOzWbx4MW5ubnh5eelVPnr0 KBUVFc2Rp7jJSgvzmzsFIYQQQggdNUD//v11G5ycnPDw8ECr1epVLCws5Ndff+XBBx9k586dTZvl be5ybib7ImdQkJaEiZk5rdsH0uXJF7F1cQdgZWhnnvgyBgtbBwCORM3nSulluo99XddGztlT/LFm IYUZ52jToTN9n38PC7tWlBbksn3GREoL8ygvKWL9c0MAsHXxYPCMpbr97/poMiHTIzm4YjYZR2Np 1c5XV15VWUn8uiUk790CioJzQFd6jJuGmZWNUeUAV65coXv37gQFBbFixYqb36lCCCGEaNF0j6BS FIWSkhJOnTqFVqvF19dXr+KmTZsYOHAgFhYWTZ7k7e7od4vQOLclJHwBAGkHd+tN8Ixx4WgsA179 BAtbB2I+m8ahr+fS94X3sLR3ZNhn6zn3+y+c3vZdrZf7tXnZ/Dr3DToMGkHvZ96h/PKfj9Y6+l0k mQlHeGjOGswsrDj45RwOf/s5PSe8aVQ5QGlpKUlJSZibm9e3e4QQQghxC9LdOJWQkEBkZCTR0dEM GzYMtfrPR6geOXIEMzMzAgMDmyXJ2511axcunYzj4sk4qqoq8ehxP5Z2rerVRsfHxmHVqg0majN8 7n+E9MO/1iv+cm4mnUIn4Nl7EGpLK6wdnXVlCVtW0TVsCmaW1qBS0Sl0ImkHdxtdDqDRaEhJSWHP nj31yksIIYQQtybdTDQgIICAgAByc3NZt24dffr0oWPHjhQUFBATE8P48eObM8/bWufQCVho7Dn8 zVwKMlLw6NafrmFT9CaK9fF/7N17XFRl/sDxz8AwMDBcRIHlDpoieAlNwduqeUt/pW5qlpm7pWJl G9Zuq6VWtkUXa81VEy+luW1SqeWtFNJMNE1JDRWFFEFUTOQ2A8MM1/n94Xa2WZCbCKTf9+s1r5c8 z/d5nu+Z7bV8Oec557j5d6C0WN+gMWoHR37XpXe19lJDAWUmI98te9Gq3d7ZpV79v+bu7t6gnIQQ Qghx66r2xil3d3fCw8M5ffo0Xbt2QavyWQAAIABJREFUJS0tDZVKxZo1a4BreweNRiNLliwhKiqq 2RO+HalsbOk86iE6j3qI0mI9h1a/zsGVrzL0haUA2KjtMBsKlD2pVRW139xW9PMFZT/rL2ztNJQW NfzmKXtnN+wcHBn+0gqc2nk3uP/X9Ho9Wq1WLvkLIYQQAhuTycSGDRvIy8sDoKCggJSUFHx9fQGI iIggOjpa+UycOBEvLy+io6PRarUtmftt4+j6JRReSAfA3skFV7/2YLEo/S4+gaR/u43K8lIu/rCX c4nbq81x/uDXVJaXUl5STPJnK7hjyB+s+t38O1CYdRZj7mUAzIaC+iWnUhEy4gG+XxVDWUnxtbH6 fPIzUuvX/x9Go5GgoCAGDx5cv3WFEEIIcUtTa7VaQkJC2LJlC4WFhVgsFsLDw+nTp09L5yb+w+OO biStXUjx1ctYqqpw8QmgT9R8pT/isdkciF1A+rdbCew7nJ6TZ1UrAnVefnw5ZzKlRQUED/g/wkZP se739KXn5Gh2zn8UW40DTu28GTrvPWxsbevMr8fkaE5sep+vnp8MKhUaRx3dJ8zAPbhzvfoBNBoN gYGB1W7YE0IIIcTtSWWx/OqUXCMUFRXV2r/cpfrew1+bU8fydc3v7Ox8S48XQgghhLgdyWtRhRBC CCFEqyNFqhBCCCGEaHWkSBVCCCGEEK1OtUdQidZF9rQKIYQQ4nYkZ1KFEEIIIUSrI0WqEEIIIYRo daRIFUIIIYQQrY4aICsriz179pCXl4dKpSIyMpJ+/fopQcnJyWzduhU7OzulbfTo0XTp0qX5MxZC CCGEELc8NUBGRgZDhw7Fz8+P3NxcVq5ciY+PD0FBQQCYzWZ69erFqFGjWjJXIYQQQghxm1ADDBo0 SGlo164d/v7+mEwmpc1kMuHk5NT82QkhhBBCiNuS8ggqi8WC0Wjk9OnTmEwmq3eom81mcnNziYuL o6qqitDQUHr27NkiCQshhBBCiFufUqSmpqayfft2LBYLU6ZMQa3+7yNUu3TpgslkIigoiLy8PDZs 2IBKpaJHjx4tkrQQQgghhLi1KZVoaGgooaGh5Ofns3HjRvr160fXrl0B8Pf3VwZ4e3vTv39/UlNT pUgVQgghhBA3RbVHULm7uxMeHs7p06evO0ilUmFjI0+vEkIIIYQQN4eNyWRiw4YN5OXlAVBQUEBK Sgq+vr4AGI1GNm7cSEFBAQCFhYV89913hIaGtljSQgghhBDi1qbWarWEhISwZcsWCgsLsVgshIeH 06dPHwCcnJy44447+PzzzykqKsLGxobIyEi6d+/ewqkLIYQQQohblRqge/futRad4eHhhIeHN1tS QgghhBDi9iYbS4UQQgghRKsjRaoQQgghhGh1pEgVQgghhBCtjhSpQgghhBCi1ZEiVQghhBBCtDpS pAohhBBCiFZHitTb0PFNqzn0/hsNHmexVN3QuvmZaXw2bQi5Z08qbRWlZjY9OZJNT47kowfv4vKJ Qze0hhBCCCFuDWqArKws9uzZQ15eHiqVisjISPr162cVePbsWXbv3k1RURGurq4MGTKEDh06tEjS ovkVnP+JpA/fYcTLq6r1Zf94gF0xM9HoXJQ2O3st41fEW8U5tvEgsO8wnNp6KW1qewfGx+4EYPvs STcpeyGEEEL81qgBMjIyGDp0KH5+fuTm5rJy5Up8fHwICgoCIDs7my+//JKHHnoILy8v8vLyKC0t bcm8RTMzGwpr7W8T2JHR72yoNcbB1Z3I6XObMi0hhBBC3KLUAIMGDVIa2rVrh7+/PyaTSWlLTExk yJAheHldOwPWtm3bZk5T3IjSYj3fr4rh55OHcfbyQ+flh73OVekvvJDOic/fJy/9FGVGA749BtDn 8fnY2tlj1ueTsCAKs6GAMmMRm54cCYCzlz8jFqyu1/oJC6IounIBAGPuz4xZtAk3//qfha+qrOT4 xlVk7P8KLBY8Q3sSMXUOdlonJaaiooLevXsTHh7O2rVr6z23EEIIIVon9S//sFgsGI1GTp8+jclk omPHjkrQlStX6N+/P19++SVXr17F39+f3//+92g0mhZJWjTMwdhXsNU4MGFlAuUmI9++81erIrXo chZB/UfS/8+vUlVRQfzLU/kpYSOh907GwdWdMe9u4vz3u0iL/6zGy/11+XUx+9m0IQ0en/xZLDmp x7jv7U+xs9eS9OHbHP14CZHTX1BizGYz6enp8t+kEEIIcYtQitTU1FS2b9+OxWJhypQpqNVKF0VF RXzzzTeMGDECNzc3tm3bxu7duxk1alSLJC3qr6zYQNahb3jow0Rs7TTY2mnwubMvpoJcJcY/4m4A yk1GDNmZuHgHcvXMCUIbsE7B+TN88thA5ef+T72Kf69BtYyov9Sv1jPsxRXYOTgC0G18FNv/9pBV karT6cjMzMTR0bFJ1hRCCCFEy1Iq0dDQUEJDQ8nPz2fjxo3069ePrl27AuDk5MTYsWNxc3MDIDIy kq1bt7ZMxqJBinIu4eDaxuqmpv9Vkp/D4Q/epNxUQts7wlDZ2FJRUtygdeqzJ7UxSg0FlJmMfLfs Rat2e+fqx+Pu7t7k6wshhBCiZaj/t8Hd3Z3w8HBOnz6tFKkeHh7k5uYqRapOp2veLEWjaV3dKS3S U1leiq2dfY0xiYtmE3rvZAL7Dgcg/dutZB36xirG1k5DaVHtN0/dKJWNCktlpVWbvbMbdg6ODH9p BU7tvGsdr9fr0Wq1cslfCCGEuAXYmEwmNmzYQF5eHgAFBQWkpKTg6+urBEVGRrJnzx7MZjMWi4UD Bw7QqVOnlspZNIBjWy/aBHXi+IZVYLFQ9HMWGYlfWcUUX72MyubaI3MNl8+TllD9jKibfwcKs85i zL0MgNlQ0OS56jx8uHh0H1gslBbrrzWqVISMeIDvV8VQ9p+zu2Z9PvkZqVZjjUYjQUFBDB48uMnz EkIIIUTzU2u1WkJCQtiyZQuFhYVYLBbCw8Pp06ePEtSxY0cMBgNr1qyhsrKSoKAghgxp+A0womUM fPYtDrz3MhtmDMM9qDPtB99HSV6O0h85/QWOb1rFsbhluAV0JGTERLIO7baaQ+fpS8/J0eyc/yi2 Ggec2nkzdN572NjaNlme3SfMYO+i2Wx4fAReYXcx8Jk3AegxOZoTm97nq+cng0qFxlFH9wkzcA/u rIzVaDQEBgZa3fAnhBBCiN8ulcVisdzIBEVFRbX2L3e5/l5IgDl1LF/X/M7OzjJeCCGEEOIWI69F FUIIIYQQrY4UqUIIIYQQotWRIlUIIYQQQrQ61R5BJW4tsqdVCCGEEL9FciZVCCGEEEK0OlKkCiGE EEKIVkeKVFFvFktVS6dwUyUnJ+Pt7U1SUlKTzVlSUkJwcDDBwcHY29uze/fuugc1Uk35N+f6Qggh RFNSA2RlZbFnzx7y8vJQqVRERkbSr18/4NqbfJYuXWo1qLKyEp1Ox6xZs5o/Y9EiCs7/RNKH7zDi 5VUtnUqDmc1m/vKXv/D555+jUqkYOHAg77zzDv7+/lZx3t7ejB8/Hj8/vyZb29HRkYyMDAB69+7d qDni4+O59957adOmjdLm5OREZmamVVxN+TfF+kIIIURLUANkZGQwdOhQ/Pz8yM3NZeXKlfj4+BAU FISTkxPPP/+81aBPP/2Ubt26tUjComWYDYUtnUKjxcTEcOrUKY4cOYKLiwufffYZSUlJ1YpUT09P li1b1kJZ1q5bt24cO3as1pjWnL8QQgjRUDYAgwYNUs6+tGvXDn9/f0wmU40DUlJSUKvVhIWFNV+W osWY9flsfXY8+xY/T87pY2x6ciSbnhxJwoIoAAovpLPx8RFWWwHKjEV8OnUwleWlAGyfPYlziV+y Y96f+HTqYL5542lKDQVKfFVlJT9+GssXT4/miz/fx3fvvUS5yWiVR0VFBT169OCxxx5r8DGcOnWK iIgIfH19cXZ2Ztq0aYwbN07pHzZsmHJJXK1Wk5KSovTt3buXMWPGMHToUO644w62b99O+/btGTly pBLTu3dvPv74YwYMGICXlxdjxowhNze33vlVVFSwYMECQkJC6NSpE1OnTq3zqQy/Vlv+zbG+EEII cTMoe1ItFgvFxcUkJSVhMplqfAe6xWLh22+/ZeDAgc2apGg5Dq7ujHl3E5FRc/EM7cH42J2Mj93J iAWrAXDz74DOy49Lx75Txpw/tAv/XoOxtbNX2tK/3crg597hgVVfY6O244eP3lX6kj+L5cqpH7jv 7U+5f+k2NI46jn68xCoPs9lMeno6p06davAx/PGPfyQ2NpYXX3yxxuJx165dZGRkkJGRgYeHR7X+ hIQElixZQmRkJG+++SaHDx/m8OHDXLhwQYlZt24dGzZs4MKFC2g0GmbPnl3v/F555RUSExM5cuQI aWlpuLq6Mnfu3HqPryv/m72+EEIIcTMoRWpqaiqxsbHs2bOHMWPGoFZXf4Rqeno6zs7OjfpFKG5d nUc+xJmvNyk/ZyR+RftB91nFdL1/Kto2Htio7ehw91guHd2v9KV+tZ6ek2dh5+AIKhXdxkdxIelb q/E6nY7MzEz27t3b4PzGjh3L/v37SUpKIjAwkHnz5mE2m+s9PjQ0lC5dutCxY0dGjRpFu3btCAgI 4Ny5c0rMnDlz8Pb2RqPR8Kc//YkdO3bUe/6lS5fy+uuvo9PpUKlUzJ07l61bt1rFnDhxAg8PD+Wz bdu2es/fFOsLIYQQzU2pRENDQwkNDSU/P5+NGzfSr18/unbtahV89uxZgoODmz1J0boFRA7hh3X/ wFRwFVQqiq5c5Hdhd1033s2/A6XFegBKDQWUmYx8t+xFqxh7Z5dq49zd3Rud45133snOnTs5duwY M2bMIC0tjY0bNzZoDpVKVeO//1eXLl3Iz8+v15y5ubkYDIZq2xj+91jrsye1Meq7vhBCCNHcqp0u dXd3Jzw8nNOnT1crUrOyshg2bFizJSdaD1s7DaVFNd88ZWOr5o4hfyD9222oHbQE/34U1FLEFV3O QufpC4C9sxt2Do4Mf2kFTu28a81Br9ej1WrRaDSNPo4ePXqwcOFCJk6c2Og56nK9P+ZsbGyoqKiw amvbti06nY74+HgCAgJuWk6tYX0hhBCiIWxMJhMbNmwgLy8PgIKCAlJSUvD19a0WXFBQIK/RvE25 +XegMOssxtzLAJh/deMTQKfhE0jfu43MAwl0GDS62vjMAwlUlpdSVlJM8mcr6Dj0/msdKhUhIx7g +1UxlJUUX5tbn09+RqrVeKPRSFBQEIMHD25Q3hUVFfTv35+PPvoIg8HA1atX+fjjj5VHrDWVDRs2 YDab0ev1vPLKK0ydOrVaTGBgIDt27MBisShnWlUqFU888QQzZ85Er792djknJ+emnDVt6fWFEEKI hrDRarWEhISwZcsWFi1axJo1awgICKBPnz5WgZWVlZhMJhwdHVsoVdGSdJ6+9Jwczc75j7I5eiz7 Fr9AVWWl0u/o7oGrX3sqSs24+lY/i6i2d+DL2Q+zZdZYPDqHEzZ6itLXY3I07e7oylfPT2bzrD/w zZvRlOTnWI3XaDQEBgbWeENfbdRqNcuWLePTTz8lJCSELl26YDKZWL16dQO/gdo5OjoSERFBWFgY /fr149lnn60WM3/+fBISEggICODpp59W2mNiYoiIiKBPnz6EhYUxduxYsrOzmzS/1rC+EEII0RAq i8ViuZEJ6npUzXKX6nsLf21OHcvXNX9dZ3Zl/I2Nb4jvV76GW8AddB71kFX79tmTuGvKs3h3i2iy tVqT3r1789ZbbzFkyJCWTkUIIYS4ZchrUUWT+DkliZ9Tkug0fPx1Im7ob6FW7wb/1hNCCCHE/6j+ nCkhGqCi1Mzm6DHYaZ3o/9TfsVHbtXRKQgghhLgFSJEqboja3oEJKxNqjblvYVwzZdMykpKSWjoF IYQQ4pYjl/uFEEIIIUSrI0WqEEIIIYRodaRIFUIIIYQQrY4UqaLZWCxVjRq3ffYkLp841MTZNE55 eTmzZ8+mpKSkyeZMTU1l0aJF1+0/evQoV69ebbL1YmJirJ6TWl9VVbX/77d//36OHDnS2LSEEEII KzZw7XWn69atY9GiRbz77rscOHDAKqiyspJt27axZMkS/vnPfxIfHy+P3BENUnD+J77++xMtnUat +vXrx1//+tdaYx555BHatm3bpC+1uOOOOzh48CDvvvtujf0HDx7kH//4R5Ot1xjHjx/nnnvuqTUm OTmZ1NTUWmOEEEKI+lIDZGRkMHToUPz8/MjNzWXlypX4+PgQFBQEXLt7ubi4mKeeeorKykrWr19P SkoKXbt2bcncxW+I2VDY0inUKiUlBQ8PD7755hvKysrQaDTVYj755BPMZjNz5sxp0rXVajXr1q3j rrvuYtSoUXTu3Nmq/+GHH+auu+4iJiYGW1vbJl27vnJzc6/bV1payrx584iLi6OyspKEhAQWL15M mzZtmjFDIYQQtxo1wKBBg5SGdu3a4e/vj8lkUtpMJhMBAQHY2tpia2tLhw4d6nyTkbg1/JzyA6e2 rqOi1ETx1ctEPDabQx+8iYtPIMNfXAFA4YV0Tnz+PnnppygzGvDtMYA+j8/H1s4esz6fhAVRmA0F lBmL2PTkSACcvfwZseC/rybN2L+Dk5vXYNbno3Vrx50Tn8S/92Clv7ykmL3/eI7LJw6j8/Rl0F8W 4vw7f6W/oqKC3r17Ex4eztq1axt8nKtXr+bRRx8lKSmJL774ggcffLBazD/+8Q/WrVvX4Ll/sWjR Ivr27Uvfvn2r9Tk6OvK3v/2NZcuWsWzZMqu+Nm3a0Lt3bxISEhg1alSD183Pz2fmzJns2bOH9u3b 0759e9zd3ZX+lJQU3njjDY4cOUJBQQGjRo0iNjYWBwcHcnJyGDZsGFevXqWwsJDg4GuvvO3QoQO7 du0C4IMPPuDQoUOcOXMGjUbDmjVrMJlMUqQKIYS4IcqeVIvFQnFxMUlJSZhMJqt3pHfv3p0jR47w 448/YjQaOXv2LGFhYS2SsGh+2ckHiZj2Au06duPEF2u476315J49iTH3ZwCKLmcR1H8kY97dxLjl Oyi8mM5PCRsBcHB1Z8y7m4iMmotnaA/Gx+5kfOxOqwI180A8R/+9mP5PvcoDq3fz+2fepKLUbJXD j5/G0vX+ady/dCtat7ac+PwDq36z2Ux6ejqnTp1q8PGVlpayY8cO7r33Xv74xz+yevXqajHZ2dkY DIZG/XefnZ0NgNFopKioiKqqKq5cuVIt7g9/+AObN2+ucY5HH320UcU3QFRUFHZ2dmRlZbF161Yu Xbpk1X/27FkefPBBjh8/zrlz5zh16hQrV64EwNPTk+PHj7Ns2TIGDBhARkYGGRkZSoH6C5VKhcVi Qa1WM2PGDHx8fBqVqxBCCPEL5WH+qampbN++HYvFwpQpU1Cr//ucf1dXV7y9vTl69Cjbtm0jMjIS V1fXFklYND9Xv2Dc/Dvg4h2Im38H7F3a4NTOm6IrF3Fq9zv8I+4GoNxkxJCdiYt3IFfPnCC0nvOf 2vYRPR95Bvfga5e5XX2DcfUNtoq5a8qztG1/bcagfvfw09cbrfp1Oh2ZmZmN2iu6adMmRo4ciUaj oXPnzhQXF5Oenk6HDh2UmMzMTKufG2Lt2rVs374ds9nM7t27+fvf/84zzzzDhAkTrOLc3d0pKSmp cbvBiBEjeOqpp8jPz7c6C1qXgoICNm/eTG5uLvb29nh4eDB8+HB+/vlnJWbs2LEAFBUVkZaWRseO HTl8+HC915g+fTo//vgjQUFBREVFMWfOHPn/ByGEEDdMqURDQ0MJDQ0lPz+fjRs30q9fP2XP6ccf f0xkZCSdO3cmPz+f7du3c/DgwRovW4pbl0pV879L8nM4/MGblJtKaHtHGCobWypKius9r+FyFm7+ tReANr/6o0nr1pbK8rJqMQ0p3n5t4sSJVpf39+/fj42N9YMvysrKsLNr3Ctf582bx6OPPkrPnj0p Ly8nOTn5untL1Wp1jUWqra0tDz74IHFxcTz11FP1XjsjIwMPD49aL71funSJ6OhoiouL6dWrF2q1 Gr1eX+81NBoNq1at4plnnuGtt94iJCSE+Ph47rzzznrPIYQQQvyvao+gcnd3Jzw8nNOnTwPX9qNe uXJFuZnD3d2d4cOHc+LEiebNVLRaiYtmEzxgFMNfWkHPh6Px7hZRLcbWTkNpUc03T+k8fdBfyrzh PPR6PWVl1YvXuqjVaquiUa1WVytS/fz8uHDhQqPXnz9/PqtXr2bs2LF88MEHNcaYzWaqqqrQ6XQ1 9td1yb+m9T09PcnPz8dsNl9nFEyaNIlJkyYRHx9PTEwMd999d7UYBwcH8vLyrjsHQFhYGOvWreOR Rx5RtgsIIYQQjWVjMpnYsGGD8guooKCAlJQUfH19gWu/nDQaDWlpaVgsFqqqqjh79qxczhOK4quX Uf2nqDNcPk9awoZqMW7+HSjMOosx9zIAZkOB0hdyz0SOfrwE/aWM/8yXzcktHzYoB6PRSFBQEIMH D27cQdShQ4cOGAwGq8vk9V2/qKiIsLAwxowZw9///ncuX75c4xwJCQkMGzbsujmEhISg0Whq/APx euv7+fnRvXt3XnvtNSwWC2fPnmX9+vVWMefPn1eK9DNnztRYYIaFhXHy5EmysrIArJ7bGh0dzYoV K8jOzubcuXMcPnyYTp06Xfc4hBBCiPpQa7VaQkJC2LJlC4WFhVgsFsLDw+nTpw9w7YaISZMmkZCQ QEJCAhaLBR8fH+69994WTl20FpHTX+D4plUci1uGW0BHQkZMJOvQbqsYnacvPSdHs3P+o9hqHHBq 583Qee9hY2tLx6HjsFRWsmfhs1SYTTi4tqHbuOkNykGj0RAYGGh1w19TUqlUzJgxg7fffrvGZ5bW tr6zszN/+9vfgGuX7V9++eVqMRaLhbfffptXX3211jwee+wxPvzww2o51LZ+XFwc06ZNw8/Pj/Dw cKZMmWJ189TSpUuJiYnhxRdfpGvXrjzxxBN88cUXVnMEBwfz+uuvM3DgQLRaLQEBAXz55Zeo1Wpm zZrFwoULiYmJwc3NjejoaKZOnVrrcQghhBB1UVlu8Kn8dT2KarmLS639c+pYvq75nZ2dZfxNHC/+ q7y8nP79+/Pqq6/W+WD7hnrttdc4f/58jU8W+DWDwcCdd97JmTNnrG5ubA3ee+893NzcmDx5ckun IoQQ4hYgr0UVop7s7OzYtm0bixcvbtLXop48eZKUlBSWL19eZ6yLiwv9+/fnyy+/bLL1m4q3tzce Hh4tnYYQQohbhJxJlfG19gshhBBCtAQ5kyqEEEIIIVodKVKFEEIIIUSrI0WqEEIIIYRodaRIFUII IYQQrY4UqUIIIYQQotVRA2RlZbFnzx7y8vJQqVRERkbSr18/JchgMLB9+3auXr2KVqvlnnvuITAw sMWSFkIIIYQQtzY1QEZGBkOHDsXPz4/c3FxWrlyJj48PQUFBAHz++ed06dKFhx9+mNzcXP71r38R FRUljy8SQgghhBA3hQ3AoEGD8PPzA6Bdu3b4+/tjMpkAMJvNXL58mV69ein9PXv25IcffmihlIUQ QgghxK1O2ZNqsVgoLi4mKSkJk8lk9Q7w8vJyysrKlJ89PT25evVq82YqhBBCCCFuG8rLv1NTU9m+ fTsWi4UpU6Yo7wV3cHDA29ubQ4cOERkZycWLF9m9ezdOTk4tlrQQQgghhLi1KUVqaGgooaGh5Ofn s3HjRvr160fXrl0BeOCBB9izZw/r16/Hz8+P3//+95w9e7bFkhZCCCGEELc29f82uLu7Ex4ezunT p5Ui1c3Njfvvv1+JiY+Px8vLq/myFEIIIYQQtxUbk8nEhg0byMvLA6CgoICUlBR8fX2VoMzMTEpL SwE4d+4cJ0+eVG6kEkIIIYQQoqmptVotISEhbNmyhcLCQiwWC+Hh4fTp00cJunLlCl9++SVlZWW4 u7szZcoUtFptC6YthBBCCCFuZWqA7t2707179+sGRUZGEhkZ2WxJCSGEEEKI25u8FlUIIYQQQrQ6 UqQKIYQQQohWR4pUIYQQQgjR6kiRKoQQQgghWh0pUoUQQgghRKsjRaoQQgghhGh1pEgVt5zjm1Zz 6P03WjoNIYQQQtyAaq9FjYuLo6ioiBkzZihtVVVVfP3116SlpWFra0ufPn246667mjVRIYQQQghx +7AqUpOTkykvL68WdODAAQwGA3/+858pLS3lww8/xN3dneDg4GZLVAghhBBC3D6UItVgMLBv3z5G jRrF7t27rYKOHj3KpEmTsLGxQavV0q9fP44ePSpF6m2iJD+Hb96MZtj8WJLWLiQ7+SBtAjoyYsFq AKoqKzm+cRUZ+78CiwXP0J5ETJ2DndZJmSNj/w5Obl6DWZ+P1q0dd058Ev/egwEoKynmhw/fITv5 ADa2au4Y8ge6jZuGysa2XuuXFuv5flUMP588jLOXHzovP+x1rlb5H4hdgP5COjZ2Gtq2D6PHw0/j 7OWnxFRUVNC7d2/Cw8NZu3btzf5KhRBCCFEHpUjdtm0bQ4YMwd7e3iqgqqoKg8FAu3bt+O6772jb ti2enp4cPny42ZMVLcdUkMu+xc/TafgE+j7+EmUlRUpf8mex5KQe4763P8XOXkvSh29z9OMlRE5/ AYDMA/Ec/fdi7p7zT9yDO6O/lEF+Rpoy/mDsAuwcdYxb/hXlJiO7Y57C1t6BLqP/WK/1D8a+gq3G gQkrEyg3Gfn2nb9aFanJn61A5+nLsLnvAXAh6VurAhrAbDaTnp6ORqNp2i9OCCGEEI1iA3Ds2DHs 7OwICwurFlBRUYGNjQ0qlYrMzEwuX76MnZ0dpaWlzZ6saDkl+Tl0Gz+dwL7DUTtocXT3VPpSv1pP z8mzsHNwBJWKbuOjuJD0rdJ/attH9HzkGdyDOwPg6htM8ICRAJQZizj//S56/ek5bGzV2OtcCX/o Kc58vale65cVG8g69A2R057ZCJBNAAAgAElEQVTH1k6Dg0sbfO7sazXWsa0XV04d4edTR6iqqsQ/ 4m4cXNpYxeh0OjIzM9m7d2+TfWdCCCGEaDy1Xq8nMTGRadOm1Rjwy5mliooKJk+eDEBWVhbOzs7N lqRoeWoHR37XpXe19lJDAWUmI98te9Gq3d7ZRfm34XIWbv4dapy3OOcSDi5t0DjqlDYX7wCKcy7V a/2inEs4uLZBo3Op1veL7uOnY69z5ei/F6PPzsS/1yB6Tp5lVWgDuLu7X3cOIYQQQjQvdVpaGiqV ijVr1gDXilGj0ciSJUuIiopCq9Xi6enJpUuXCAwMBODixYt4enrWNq+4Tdg7u2Hn4Mjwl1bg1M67 xhidpw/6S5m0CexUrc/JwxuzoYByk1G5BF905SJOHj71Wl/r6k5pkZ7K8lJs7exrjFHZ2NJ51EN0 HvUQpcV6Dq1+nYMrX2XoC0ut4vR6PVqtVi75CyGEEK2ATUREBNHR0cpn4sSJeHl5ER0djVarBaBX r17s3buXyspKiouLSUpKomfPni2cumgVVCpCRjzA96tiKCspBsCszyc/I1UJCblnIkc/XoL+UgYA xVezObnlQwDsda4ERAzhyL/exVJVSVlJMT9+spyOw8bVa3nHtl60CerE8Q2rwGKh6OcsMhK/soo5 un4JhRfSr63n5IKrX3uwWKxijEYjQUFBDB48uDHfghBCCCGaWLXnpNYkPDycwsJCYmNjsbGxYdiw YXh5ed3s3MRvRI/J0ZzY9D5fPT8ZVCo0jjq6T5ih7EHtOHQclspK9ix8lgqzCQfXNnQbN10Z32/m KyStXcimJ/8PG1tbOgweTZfRU+q9/sBn3+LAey+zYcYw3IM6037wfZTk5Sj9Hnd0I2ntQoqvXsZS VYWLTwB9ouZbzaHRaAgMDKRjx443+G0IIYQQoimoLJb/OaXUQEVFRbX2L3e5/l5BgDl1LF/X/HXt jZXxNzZeCCGEEKIlyGtRhRBCCCFEqyNFqhBCCCGEaHWkSBVCCCGEEK1OvW6cErcv2dMqhBBCiJYg Z1KFEEIIIUSrI0WqEEIIIYRodaRIFc3u+KbVHHr/jQaPs1iqbmjd/Mw0Pps2hNyzJ5W2ilIzm54c yaYnR/LRg3dx+cShG1rjt6Cx378QQgjRnKrtSY2Li6OoqIgZM2YobUajkUOHDpGamoqLiwuPPPJI syYpRMH5n0j68B1GvLyqWl/2jwfYFTMTje6/z+S1s9cyfkW8VZxjGw8C+w7Dqe1/X0ShtndgfOxO ALbPntSo3Ha/8TRXf0pGrdFSYS7Bo1N3ImfMQ1fPV7sKIYQQojqrIjU5OZny8vJqQTY2Nvj4+FBW VkZubm6zJSfEL8yGwlr72wR2ZPQ7G2qNcXB1J3L63KZMS9H7T8/RYfAYykuKOf75+3y/6jWGzVt+ U9YSQgghbgdKkWowGNi3bx+jRo1i9+7dVkFarZbOnTtLkSoapbRYz/erYvj55GGcvfzQeflhr3NV +gsvpHPi8/fJSz9FmdGAb48B9Hl8PrZ29pj1+SQsiMJsKKDMWMSmJ0cC4Ozlz4gFq+u1fsKCKIqu XADAmPszYxZtws2/Q73zr6qs5PjGVWTs/wosFjxDexIxdQ52WqdqsXaOOoL6Didz/44Gjc/Yv4OT m9dg1uejdWvHnROfxL/3YADKSor54cN3yE4+gI2tmjuG/IFu46ahsrEFoCQ/h2/ejGbY/FiS1i4k O/kgbQI6Kt9PXd8/QEVFBb179yY8PJy1a9fW+7sRQgghbhalSN22bRtDhgzB3t6+JfMRt6CDsa9g q3FgwsoEyk1Gvn3nr1ZFUtHlLIL6j6T/n1+lqqKC+Jen8lPCRkLvnYyDqztj3t3E+e93kRb/WY2X ++vy62L2s2lDGjw++bNYclKPcd/bn2JnryXpw7c5+vESIqe/UC221FDAmV1f4N4+rN7jMw/Ec/Tf i7l7zj9xD+6M/lIG+RlpyviDsQuwc9QxbvlXlJuM7I55Clt7B7qM/qMSYyrIZd/i5+k0fAJ9H3+J spKiX42v/fsHMJvNpKeno9FoGvz9CCGEEDeDDcCxY8ews7MjLCysrnghGqSs2EDWoW+InPY8tnYa HFza4HNnX6sY/4i78e81iMqyUvQX03HxDuTqmRMNWqfg/Bk+eWyg8rnww94mO4bUr9bTc/Is7Bwc QaWi2/goLiR9axWTtO4dNj5+D59MHUxVVQX9nny53uNPbfuIno88g3twZwBcfYMJHnDtjHGZsYjz 3++i15+ew8ZWjb3OlfCHnuLM15us1i/Jz6Hb+OkE9h2O2kGLo7vntfH1+P4BdDodmZmZ7N3bdN+b EEIIcSPUer2exMREpk2b1tK5iFtQUc4lHFzbWN3U9L9K8nM4/MGblJtKaHtHGCobWypKihu0Tn32 pDZGqaGAMpOR75a9aNVu72x9PL3/9BztB97LlmfG4XNnP+yd3eo93nA567rbD4pzLuHg0gaNo05p c/EOoDjnklWc2sGR33XpXW18fb7/X7i7u9cZI4QQQjQXdVpaGiqVijVr1gDX9qYZjUaWLFlCVFQU Wq22hVMUv2VaV3dKi/RUlpdia1fzVpLERbMJvXcygX2HA5D+7VayDn1jFWNrp6G0qPabp26UykaF pbLSqs3e2Q07B0eGv7QCp3bedYy3JfyhmRyLW0pA5FBsbG3rNV7n6YP+UiZtAjtV63Py8MZsKKDc ZFT2sBZduYhTPZ8cUJ/v/xd6vR6tViuX/IUQQrQKNhEREURHRyufiRMn4uXlRXR0tBSo4oY5tvWi TVAnjm9YBRYLRT9nkZH4lVVM8dXLqGyuPbLXcPk8aQnVz4i6+XegMOssxtzLAJgNBU2eq87Dh4tH 94HFQmmx/lqjSkXIiAf4flUMZf85u2vW55OfkVrjHEF9R2CrcSB9z5Z6jw+5ZyJHP16C/lIGAMVX szm55UMA7HWuBEQM4ci/3sVSVUlZSTE/frKcjsPG1euY6vP9w7XHzAUFBTF48OB6zSuEEELcbNWe k1qTjRs3cvHiRcrKyigrK2Px4sW4uLgwderUm52fuAUMfPYtDrz3MhtmDMM9qDPtB99HSV6O0h85 /QWOb1rFsbhluAV0JGTERLIOWT9hQufpS8/J0eyc/yi2Ggec2nkzdN572NjaNlme3SfMYO+i2Wx4 fAReYXcx8Jk3AegxOZoTm97nq+cng0qFxlFH9wkzlD2kVlQqejz0FN+vjqH9oHuxtbOvc3zHoeOw VFayZ+GzVJhNOLi2odu46cqU/Wa+QtLahWx68v+wsbWlw+DRdBk9pd7HVdf3D6DRaAgMDKRjx46N +OaEEEKIpqeyWCyWG5mgqKio1v7lLrXvhZtTx/J1ze/s7CzjW/F4IYQQQojGkNeiCiGEEEKIVkeK VCGEEEII0epIkSqEEEIIIVqdet04JURjyZ5WIYQQQjSGnEkVQgghhBCtjhSpQgghhBCi1ZEiVdzS KkrNbHpyJJueHMlHD97F5ROHWjql60pOTsbb25ukpCSlraSkhODgYIKDg7G3t2f37t21zCCEEELc OqrtSY2Li6OoqIgZM2YobZcuXWL37t1cvXoVe3t7hg4dSmhoaLMmKkRjqO0dGB+7E4Dtsye1SA7x 8fHce++9tGnTRmlzcnIiMzPTKs7b25vx48fj5+entDk6OpKRce1NVL17926WfIUQQojWwKpITU5O pry83CrAYrGQmJjI0KFD8fHx4dy5c8TFxTFr1iy56UWIeurWrRvHjh2rNcbT05Nly5Y1U0ZCCCFE 66Zc7jcYDOzbt4/+/ftbBahUKiZNmoSvry8qlYoOHTrg5eXFlStXmj1ZcXsqyc9h++yHMBsK2PfP F/h06mASFkQp/WUlxRxYvoCNj4/g85n/x/GNq7BUVdZ7/qrKSn78NJYvnh7NF3++j+/ee4lyk9Eq pqKigh49evDYY4811WEphg0bplzSV6vVpKSkNGh8RUUFCxYsICQkhE6dOjF16tQ6n6oghBBCtHZK kbpt2zaGDBmCvb19rQOqqqooKCigXbt2Nz05IX5hKshl3+LnCYgYwvjlOxgQHaP0HYxdACoYt/wr 7l0Yx8UjiZz68uN6z538WSxXTv3AfW9/yv1Lt6Fx1HH04yVWMWazmfT0dE6dOtVUh6TYtWsXGRkZ ZGRk4OHh0eDxr7zyComJiRw5coS0tDRcXV2ZO3duk+cphBBCNCcbgGPHjmFnZ0dYWFidAw4ePEj7 9u1xc3O76ckJ8YuS/By6jZ9OYN/hqB20OLp7AlBmLOL897vo9afnsLFVY69zJfyhpzjz9aZ6z536 1Xp6Tp6FnYMjqFR0Gx/FhaRvrWJ0Oh2ZmZns3bu3UfmfOHECDw8P5bNt27ZGzVOTpUuX8vrrr6PT 6VCpVMydO5etW7c22fxCCCFES1Dr9XoSExOZNm1ancEZGRkcOXKEqVOnNkNqQvyX2sGR33WpfuNQ cc4lHFzaoHHUKW0u3gEU51yq17ylhgLKTEa+W/aiVbu9s0u1WHd39wZm/V/12ZPaGLm5uRgMhmrb EG4kVyGEEKI1UKelpaFSqVizZg1wbX+b0WhkyZIlREVFodVqAcjOzmbz5s08/PDD6HS62uYUotk4 eXhjNhRQbjJip3UCoOjKRZw8fKrFqmxUWCqt96raO7th5+DI8JdW4NTOu9a19Ho9Wq0WjUbTdAfQ ADY2NlRUVFi1tW3bFp1OR3x8PAEBAS2SlxBCCHEz2ERERBAdHa18Jk6ciJeXF9HR0UqBeuHCBT79 9FOlT4jWwl7nSkDEEI78610sVZWUlRTz4yfL6ThsXLVYnYcPF4/uA4uF0mL9tUaVipARD/D9qhjK SooBMOvzyc9ItRprNBoJCgpi8ODBN/uQriswMJAdO3ZgsVjIz88Hrt3Y+MQTTzBz5kz0+mvHlJOT c1PO2gohhBDNqc6H+ZeXl/PRRx9hNpv55JNPWLhwIQsXLuTf//53c+QnRJ36zXyFyvJSNj35f2x/ biI+d/ahy+gp1eK6T5hBdvJBNjw+gkPvv6G095gcTbs7uvLV85PZPOsPfPNmNCX5OVZjNRoNgYGB dOzY8aYfz/XMnz+fhIQEAgICePrpp5X2mJgYIiIi6NOnD2FhYYwdO5bs7OwWy1MIIYRoCiqLxWK5 kQnqetTNcpfqe/t+bU4dy9c1f13PapXxv+3xQgghhLg9yWtRhRBCCCFEqyNFqhBCCCGEaHWkSBVC CCGEEK2OFKlCCCGEEKLVkSJVCCGEEEK0OlKkCiGEEEKIVkeKVHHbsFiqamzfPnsSl08cuunr79+/ nyNHjtQZFxMTY/Uc1Pqqqqr5+OorOTkZb29vkpKSlLaSkhKCg4MJDg7G3t6e3bt339AaQgghRH1V K1Lj4uJYtWqVVVtWVhbr1q1j0aJFvPvuuxw4cKDZEhSiKRSc/4mv//5Ei+aQnJxMampq3YGNcPz4 ce65554a++Lj41Gr1Xh4eCifoKCganHe3t6MHz8ePz8/pc3R0ZGMjAwyMjLo3r37TcldCCGEqIn6 1z8kJydTXl5eLSgjI4OhQ4fi5+dHbm4uK1euxMfHp8ZfdEK0RmZDYYutXVpayrx584iLi6OyspKE hAQWL15MmzZtmmyN3NzcWvu7detW56tSPT09WbZsWZPlJIQQQtwIpUg1GAzs27ePUaNGVbukN2jQ IOXf7dq1w9/fH5PJ1HxZitva9tmTCLvvEdLiP8Nw+TweHbvR/6m/Y+9yrcgrvJDOic/fJy/9FGVG A749BtDn8fnY2tlj1ueTsCAKs6GAMmMRm54cCYCzlz8jFqxW1igvKWbvP57j8onD6Dx9GfSXhTj/ zl/pr6iooHfv3oSHh7N27doG5f/BBx9w6NAhzpw5g0ajYc2aNZhMJqVIzc/PZ+bMmezZs4f27dvT vn173N3dlfEpKSm88cYbHDlyhIKCAkaNGkVsbCwODg7k5OQwbNgwrl69SmFhIcHBwQB06NCBXbt2 1Su/YcOGkZ6eDsCFCxdITk6mS5cu9T6+iooKXnvtNeLi4rBYLAwYMIB//vOf8jYxIYQQN0S53L9t 2zaGDBmCvb19jYEWi4Xi4mKSkpIwmUwt+g5zcftJ/3Yrg597hwdWfY2N2o4fPnpX6Su6nEVQ/5GM eXcT45bvoPBiOj8lbATAwdWdMe9uIjJqLp6hPRgfu5PxsTutClSAHz+Npev907h/6Va0bm058fkH Vv1ms5n09HROnTrVqPxVKhUWiwW1Ws2MGTPw8fFR+qKiorCzsyMrK4utW7dy6dIlq7Fnz57lwQcf 5Pjx45w7d45Tp06xcuVK4NrZz+PHj7Ns2TIGDBigXJqvb4EKsGvXLmWch4dHg4/tlVdeITExkSNH jpCWloarqytz585t8DxCCCHEr6kBjh07hp2dHWFhYVy8eLHGwNTUVLZv347FYmHKlCmo1eoa44S4 GbrePxVtm2sFVIe7x3Iw9hWlzz/ibgDKTUYM2Zm4eAdy9cwJQhsw/11TnqVt+2sjgvrdw09fb7Tq 1+l0ZGZm4ujo2ODcp0+fzo8//khQUBBRUVHMmTMHV1dXAAoKCti8eTO5ubnY29vj4eHB8OHD+fnn n5XxY8eOBaCoqIi0tDQ6duzI4cOHG5TDiRMnrArQNWvWMHr06AYfS02WLl3Kzp070el0AMydO5de vXqxdOnSJplfCCHE7Umt1+tJTExk2rRptQaGhoYSGhpKfn4+GzdupF+/fnTt2rWZ0hTiv9z8O1Ba rFd+LsnP4fAHb1JuKqHtHWGobGypKClu0Jw2v/qjS+vWlsrysmoxv74E3xAajYZVq1bxzDPP8NZb bxESEkJ8fDx33nmncvaytv2ply5dIjo6muLiYnr16oVarUav1183vib12ZPaGLm5uRgMBh577DGr 9sZ+V0IIIcQv1GlpaahUKtasWQNc219mNBpZsmQJUVFRaLVaqwHu7u6Eh4dz+vRpKVJFiyi6nIXO 01f5OXHRbELvnUxg3+HAta0BWYe+sRpja6ehtOjGbp7S6/VotVo0Gk2jxoeFhbFu3Tqee+45Vq5c yfLly/H09CQ/Px+z2YyDg0ON4yZNmkR0dDQTJkwAYN26dWzevNkqxsHBgby8vEblVV82NjZUVFRY tbVt2xadTkd8fDwBAQE3dX0hhBC3F5uIiAiio6OVz8SJE/Hy8iI6OhqtVovJZGLDhg3KL8CCggJS UlLw9fWtY2ohmk7mgQQqy0spKykm+bMVdBx6v9JXfPUyKptr26sNl8+TlrCh2ng3/w4UZp3FmHsZ ALOhoEHrG41GgoKCGDx4cINzj46OZsWKFWRnZ3Pu3DkOHz5Mp06dAPDz86N79+689tprWCwWzp49 y/r1663Gnz9/HltbWwDOnDmj7Ef9tbCwME6ePElWVhYAV69ebXCedQkMDGTHjh1YLBby8/OBa3tt n3jiCWbOnKmc3c3JybkpZ22FEELcXup8mL9WqyUkJIQtW7awaNEi1qxZQ0BAAH369GmO/IQAQG3v wJezH2bLrLF4dA4nbPQUpS9y+guc+OIDtjxzP8fi3iNkxMRq43WevvScHM3O+Y+yOXos+xa/QFVl Zb3X12g0BAYGNuqGwVmzZnHs2DEiIyMZO3YsU6ZMsXpYf1xcHImJifj5+TFr1iymTJliNX7p0qW8 +eabdO3alRdffJEnnqj+vNfg4GBef/11Bg4cSGhoKI888ki1s543av78+SQkJBAQEGCVf0xMDBER EfTp04ewsDDGjh1LdnZ2k64thBDi9qOyWCyWG5mgqKio1v7lLi619s+pY/m65q/rMTcy/rc9Hq49 guquKc/i3S2iztjW7L333sPNzY3Jkye3dCpCCCFEqye36IvfiBv6W6pV8Pb2Vu6AF0IIIUTtpEgV opmMGzeupVMQQgghfjOkSBWt3n0L41o6BSGEEEI0szpvnBJCCCGEEKK5SZEqhBBCCCFaHSlShRBC CCFEqyNFqvjNMOZeJuGVGXw27W62/vUBsn88YNWfn5nGZ9OGkHv2pNJWUWpm05Mj2fTkSD568C4u nzjU3Gkr9u/fz5EjR+qMi4mJsXoOaX1VVVU1Ji1FcnIy3t7eJCUlKW0lJSUEBwcTHByMvb09u3fv vqE1hBBCiPqqVqTGxcWxatWq6w6oq1+Im+WHdYtw9Q1i/Iqd3PvGv/EM7WnV79jGg8C+w3Bq66W0 qe0dGB+7k/GxO2kT2Km5U7aSnJxMamrqTZn7+PHj3HPPPTX2xcfHo1ar8fDwUD5BQUHV4ry9vRk/ fjx+fn5Km6OjIxkZGWRkZNC9e/ebkrsQQghRE6u7+5OTkykvL79ucF39QtxMBed/ov+fX8XWzr7G fgdXdyKnz23mrOpWWlrKvHnziIuLo7KykoSEBBYvXkybNm2abI3c3Nxa+7t161bnq0o9PT1ZtmxZ k+UkhBBC3AjlTKrBYGDfvn3079+/xsC6+oW4WX741yK+eHoMhp+z+PbtZ9n05EgSFkQp/QkLopRL +v96IJzCC+kNmr+qspIfP43li6dH88Wf7+O7916i3GS0iqmoqKBHjx489thjDc7/gw8+4NChQ5w5 c4aLFy/Sv39/TCaT0p+fn89DDz2El5cXffv25dSpU1bjU1JSeOSRRwgNDeV3v/sdjz32GGazGYCc nBy6d+/O5MmT2b9/v3JpftiwYfXOb9iwYco4tVpNSkpKg46voqKCBQsWEBISQqdOnZg6dWqdbxoT Qggh6qIUqdu2bWPIkCHY29d8lqqufiFull5//Av3L92KzsOXofOWMz52JyMWrFb6RyxYrVzSd3Bx b/D8yZ/FcuXUD9z39qfcv3QbGkcdRz9eYhVjNptJT0+vVkDWl0qlwmKxoFarmTFjBj4+PkpfVFQU dnZ2ZGVlsXXrVi5dumQ19uzZszz44IMcP36cc+fOcerUKVauXAlcO/t5/Phxli1bxoABA5RL87t2 7ap3brt27VLGeXh4NPjYXnnlFRITEzly5AhpaWm4uroyd27rO6MthBDit8UG4NixY9jZ2REWFlZj UF39QvyWpX61np6TZ2Hn4AgqFd3GR3Eh6VurGJ1OR2ZmJnv37m3w/NOnT6dz584EBQUxd+5c9Hq9 0ldQUMDmzZtZsmQJ9vb2eHh4MHz4cKvxY8eOZfTo0ZjNZk6dOkXHjh05fPhwg3I4ceKE1Z7Ubdu2 Nfg4rmfp0qW8/vrr6HQ6VCoVc+fOZevWrU02vxBCiNuTWq/Xk5iYyLRp02oMqKtfiN+yUkMBZSYj 3y170ard3tmlWqy7e8PP0gJoNBpWrVrFM888w1tvvUVISAjx8fHceeedytnL2vanXrp0iejoaIqL i+nVqxdqtdqq0K2P+uxJbYzc3FwMBkO1bRCN/a6EEEKIX6jT0tJQqVSsWbMGuLa/zGg0smTJEqKi oqirX4jfCpWNCktlpVWbvbMbdg6ODH9pBU7tvGsdr9fr0Wq1aDSaRq0fFhbGunXreO6551i5ciXL ly/H09OT/Px8zGYzDg4ONY6bNGkS0dHRTJgwAYB169axefNmqxgHBwfy8vIalVd92djYUFFRYdXW tm1bdDod8fHxBAQE3NT1hRBC3F5sIiIiiI6OVj4TJ07Ey8uL6OhotFotdfUL8Vuh8/Dh4tF9YLFQ WvyfM5EqFSEjHuD7VTGUlRQDYNbnk59h/agoo9FIUFAQgwcPbvC60dHRrFixguzsbM6dO8fhw4fp 1Ona47D8/Pzo3r07r732GhaLhbNnz7J+/Xqr8efPn8fW1haAM2fOKPtRfy0sLIyTJ0+SlZUFwNWr VxucZ10CAwPZsWMHFouF/Px84Npe2yeeeIKZM2cqZ3dzcnJuyllbIYQQtxd5mL+4bXSfMIPs5INs eHwEh95/Q2nvMTmadnd05avnJ7N51h/45s1oSvJzrMZqNBoCAwPp2LFjg9edNWsWx44dIzIykrFj xzJlyhSrh/XHxcWRmJiIn58fs2bNYsqUKVbjly5dyptvvknXrl158cUXeeKJJ6qtERwczOuvv87A gQMJDQ3lkUceqXbW80bNnz+fhIQEAgICrPKPiYkhIiKCPn36EBYWxtixY8nOzm7StYUQQtx+VBaL xXIjE9T1qJnlLtX39v3anDqWr2t+Z2dnGX8Lj7+VvPfee7i5uTF58uSWTkUIIYRo9dR1hwghmoK3 tzc6na6l0xBCCCF+E6RIFaKZjBs3rqVTEEIIIX4zZE+qEEIIIYRodeRMqripbqc9p0IIIYRoOnIm VQghhBBCtDpSpAohhBBCiFZHilQhfiMslqqWTkEIIYRoNtX2pMbFxVFUVMSMGTOUtuTkZLZu3Yqd nZ3SNnr0aLp06dI8WYrfrNKiQj55dCB9Zswj5J4HAdi/ZB45acmMe297C2f321Hw/+3de1BUV57A 8W9DQ9PSAoJAEKFBJQoqEYKoo5MYokbjOIxi1AxaGaM4mq00MymKRGIm6kaTGGp11PgcfOyuYSer jovRqFEnojFRoyyorIw8hAhGRaB52Tx7/2C8sQNC4wNRf5+qrqLu+f3O/d0rlKdPn3s6/x+c2pLI mPc3POxShBBCiA5hMUhNT0+nrq6uWZDJZCIsLIxx48Z1WGHi8aHp6sKl4wfo+9JUGuvruH7x7MMu 6ZFjKi972CUIIYQQHUoZpJaXl3P06FHGjRvHoUOHLIJu3ryJo6NjhxcnHg/2jk6YjCWYjCUUZ5/D 2duPsh9ylfbGhgYytm8g79heMJvxCAwl/PW3sdM2/c6V/ZDD2Z1/4UZOJrVV5XiHjGDo7xdga6cB oLrkGsfXLsT4Qw42dva49Qoi5Ldv0tWzJwBbo4KZtiUVTVcXANKSV1NvqmbwzHgl//BHBkYtWMup zcsoSv+Wbr4BjFm4sc36fjz/PZkpW6mvuUnl9SuEz4znRNJHOPXQM/q9dVZd3xfxrzJs7p8497ck rpw9ic7Dm+ffWkbXp71JRsEAAA8ySURBVHwwGUs4sDAGU3kptVUV7Jg3FoCunj5KfQD19fUMHjyY QYMGsXnz5gf2bymEEEJ0FGVN6u7du4mIiECj0TQLMplMFBQUkJyczLZt2zhz5kyHFikebfWmavRD R1Fw4hD5335Fj0HDLdrTP1/L1czv+dUnf2Xiqt3Yd9FxZttKpb3iSgF+w8fy6+U7mLTmS8ou5/CP A9tvy1+HzsObqLX7mLgyBf/hY5UBoLVulhZzdMU7+IZHELXmS0YYllhdX1H6t4TPmk/3gIGc/dsm fvXxZxRnn6Oq+Eer8gG+XbuQARNnMXFVCloXN87uTALAwdmVXy/fwZCYBDwCQ4hau4+otfssBqjQ 9Deak5NDZmZmu65bCCGE6KxsANLS0rCzsyMoKKjFoP79+xMeHk5UVBQREREcO3aMtLS0Di1UPLoa 6mrwf248BScPU3IpC4++z1i0X9j7GaHRsdg5dAGVioFRMfxw6mul3Sf8BXzCnqehtgbj5RycvPQW Swa6uHlyNfM0P2aeprGxAZ/wF3Bw6tauGqtLrjEwajb6YaNRO2jp4uphdX3OPf1x8emNk5ce79AR aJy64djdi4qrl63KBwj5rQG3XoFourrg94uXMBbmtat+nU7HpUuXOHLkSLvyhBBCiM5KbTQaSU1N ZdasWXcM8vHxUX728vJi+PDhXLhwgZCQkI6oUTwGnHv4YSovxTtkBKhUyvGa8lJqb1bxzer3LOI1 XZ2Un6tLrnEy6SPqblbj1icIlY0t9dWVSntw1Gw0OmfO/OcKjEWX8Al7ntDoWIuBZlvUDl14qv/g Zsetqe+W2y5L+dnafBv1T8vDtS5uNNTVWl37La6uru3OEUIIITordVZWFiqVik2bNgFNa9uqqqpY uXIlMTExaLXaZkkqlQobG9m9SrTP828tw17nrHwMDk0PVdk5dGH0n9bh2N2rxbzUf4sncHw0+mGj Acj5OoWCE4eVdpWNLf3GTaPfuGnUVBo5sXEp367/V16cvwoAG7UdpvJSZU1qY33zhwPvxJr6HmT+ LbZ29tRUtP7wlNFoRKvVYm9vf9fnEUIIIToLm/DwcAwGg/KaMmUKnp6eGAwGtFotVVVVbN++ndLS UgDKysr45ptvCAwMfMili0dN16d80eicLQ+qVPQd8wrfbVhC7T9nR03GEkryLighldevoPrnm6Ly K/lkHfhviy7OfLaSsh9yANA4OuHcsxeYzUq7Uw89OV/vpqGuhsvfHyE3tR1bX1lR3wPN/ycXn96U FWRTVXylqY/yUov2qqoq/Pz8GDlyZLv6FUIIITqrZvuk/pyjoyN9+vRh586dVFRUYGNjw5AhQwgO Du6I+sQTICTawNkdf2HvO9GgUmHfRUfw5Dm4+vcDYMjs+WTs2EBa8mpcfAPoO2YKBSd+2oHCvc9A Tm1eRuX1K5gbG3Hq4cvQmAVKe/jMeI6vXUjO1ynoh40mNDq2XYPEtup70PkAOg9vQqMN7FvwO2zt HXDs7sWL736Kja0tAPb29uj1egICAqzuUwghhOjMVGbzbVNOd6GioqLV9jVOzdfu3e7tNk7fVv9d u3aV/E6cL4QQQghxN2RhqRBCCCGE6HRkkCqEEEIIITodGaQKIYQQQohOp80Hp4S4F7KmVQghhBB3 Q2ZShRBCCCFEpyODVCGEEEII0enIIFU8Mczmxke6/7YcO3aM06dPtxm3ZMkS3nzzzXb339h4b9eX np6Ol5cXp06dUo5VV1fj7++Pv78/Go2GQ4cOtdLD4+Fu778QQjxpmg1Sk5OT2bBhQ7PA7Oxs1q9f T2JiIhs3biQnJ6dDChTifijN/wdfLZ77yPZvjfT0dC5caN83WVkrIyODl156qcW2/fv3o1arcXd3 V15+fn7N4ry8vIiKiqJnz57KsS5dupCXl0deXt5df0HIhAkTcHd3R6/X4+bmxvjx48nPz7+rvoQQ QnQeFg9OpaenU1fX/HvNi4qK2LNnD9OmTcPT05MbN25QU1PTYUUKca9M5a1/731n7x/g3LlzdOvW DW9vb4vjNTU1vPvuuyQnJ9PQ0MCBAwdYsWIF3bp1u2/nLi4ubrV94MCBpKWltRrj4eHB6tWr71tN t0tMTOS1116jvLycpUuXMm/ePPbu3ftAziWEEKJjKDOp5eXlHD16lOHDhzcLSk1NJSIiAk9PTwDc 3Nzo0aNHx1Upnmi11ZUcX7OQ7b8fw843XiZj+wbMjQ1K+9aoYGoqfhokpiWv5tTmZQCYjCWk/DGK oyve4dr/pbFj3lh2zBvLgYUxSvwX8a+Sm7qHL999jb++PpLDH75JTXnpfesfoL6+npCQEGbOnHnX 92Hbtm189913zY4nJSVx4sQJLl68yOXLlxk+fDg3b95U2ktKSpQ3mMOGDSMzM9Mi//z580yfPp3A wECeeuopZs6ciclkAuDatWsEBwcTHR3NsWPHlI/mR40aZXXdo0aNUvLUajXnz59v13XX19ezcOFC +vbty9NPP83rr79+x10jnJycmDx5ssU1WpOfnJxMSEgI3t7ePPvss6SkpChtRqOR2bNn4+vrS+/e vfnggw9oaPjp96+wsJCwsDCuX7/O9OnT8fT0tLg/bd1/IYQQLVMGqbt37yYiIgKNRtMs6OrVq7i4 uLBnzx62bNnCoUOHqK2t7dBCxZPr27ULQQWT1uxl/LJkLp9OJXPPNqtyHZxd+fXyHQyJScAjMISo tfuIWruPMQs3WsTlfJ3CyLhEXtnwFTZqO77/j+X3tX+TyUROTs4DG6CoVCrMZjNqtZo5c+ZYvImM iYnBzs6OgoICUlJSKCwstMjNzs5m6tSpZGRkkJubS2ZmJuvXrweaZj8zMjJYvXo1I0aMUD6aP3jw oNW1HTx4UMlzd3dv97UtWrSI1NRUTp8+TVZWFs7OziQkJLQYW1xcTFJSEqGhoVbnf/7558yfP5/N mzdTWFjItm3bqK6uVtpjYmJQqVTk5ORw6tQp9uzZw5///GeL8/74449ER0fzm9/8htzcXLZu3WqR 39r9F0II0TIbgLS0NOzs7AgKCmoxqKKigsOHDxMaGsrUqVO5cePGE/GAg3j4aqsqyP/uIGGvxWFj q0ajc2bQtH/h4lc77ut5Bkx8HW03d2zUdvR+IZLCM8fua/86nY5Lly5x5MiRdueOHTuWwYMHs2XL FuLj4xk8eDBxcXFK++zZs+nXrx9+fn4kJCRgNBqVttLSUnbt2sXKlSvRaDS4u7szevRoi/4jIyOZ MGECJpOJzMxMAgICOHnyZLtqPHv2rMWa1N27d7f7Ou9k1apVLF26FJ1Oh0qlIiEhwWKmEyAuLg69 Xo+Hhwf19fVs3LjR6vzly5fz4YcfMmjQIAD69evHtGnTACgrK2Pnzp0kJiZiZ2eHq6srixcvtugf mmZTExISmDx5Mo6OjsqSDGvuvxBCiJapjUYjqampzJo1645Bjo6OREZG4uLiAsCQIUOa/SchxINQ ea0QB6du2HfRKcecvHypvPbgZqNcfHpTU2lsO7CdXF1d7ypv3759AMyfP5+wsDCioqIs2u3t7dmw YQN/+MMf+Pjjj+nbty/79+/nmWeeUWYvW1ufWlhYiMFgoLKykrCwMNRqtcVA1xrWrEm9G8XFxZSX lzdbJvHze5mYmMj06dMZMGAAY8aMwc3Nzer8ixcv0r9//xbPn5eXR/fu3XF2dlaO9enTh7y8PIs4 nU7HyJEjW8xv6/4LIYRomTorKwuVSsWmTZuApvVbVVVVrFy5kpiYGLRaLe7u7hQXFyuDVJ1O11qf Qtw3ju5emMpLqbtZhZ3WEYCKq5dxdP/p42wbtR2m8lI0XZt+Pxvrmz/8Z2tnb7GutDUVVwrQefz0 cNL96t9oNKLVarG3t7eqjvYKCgpi69atxMXFsX79etasWYOHhwclJSWYTCYcHBxazHv11VcxGAxM njwZgK1bt7Jr1y6LGAcHB27cuPFA6r7FxsaG+vp6i2Nubm7odDr279+Pr69vq/m2trYsWrSIBQsW MHHiRNRqtVX5fn5+ZGVltbi7gF6vp7i4mIqKCuXb0XJzc1vcvaAl1tx/IYQQLbMJDw/HYDAorylT puDp6YnBYECr1QJNM6d///vfMZlMmM1mjh8/ztNPP/2QSxdPAo3OGd/wCE7/+3LMjQ3UVlfyv/+1 hoBRk5QYpx56cr7eTUNdDZe/P0Ju6hfN+nHx6U1ZQTZVxVcAMN32YBTApeMHaKiroba6kvTP1xHw 4sT72n9VVRV+fn4tzrZZ65e//GWLf3cGg4F169ZRVFREbm4uJ0+eVOJ69uxJcHAwH3zwAWazmezs bD777DOL/Pz8fGxtbYGmWcVb61FvFxQUxLlz5ygoKADg+vXrd30dd6LX6/nyyy8xm82UlJQATWtt 586dyxtvvKHM7l67du2Os7avvPIKWq2WLVu2WJ0/b948EhISlO278vPz+eSTT4CmGdfIyEji4+Np aGjAaDTy/vvvt/rJ0+2suf9CCCFaZtVm/gEBAYSGhrJp0yZlC5mIiIgHWpgQt/zijUU01NWwY97L fBE3hR7PDKX/hBlKe/jMePKO7WXnG+MpyviO0OjYZn3oPLwJjTawb8Hv2GWI5OiK+TTe9oS2WuPA nvjf8j+xkbj3G0TQfe7f3t4evV5PQEDAXd+Hl19+mYEDBzY7HhsbS1paGkOGDCEyMpIZM2ZYbBaf nJxMamoqPXv2JDY2lhkzZljkr1q1io8++ogBAwbw3nvvMXdu8/1e/f39Wbp0Kc899xyBgYFMnz69 2aznvVqwYAEHDhzA19fXov4lS5YQHh7O0KFDCQoKIjIykqKiohb7UKlULF68mEWLFik7FLSVP2vW LOLi4pg0aRJ6vZ6oqCh69eqltCclJWEymejVqxehoaGMHj2at956y+rrauv+CyGEaJnKbDab76WD O20Fc8saJ6dW299u4/Rt9X/rIzjJfzzzO8IX8a/y7Iw/4jUw/GGXck8+/fRTXFxciI6OftilCCGE EPdM3XaIEE+Ce3qv1il4eXnJenEhhBCPDRmkCvGYmDRpUttBQgghxCNCBqniiferZckPuwQhhBBC /MwDX5PaGdYcCiGEEEKIR4tVT/cLIYQQQgjRkWSQKoQQQgghOh0ZpAohhBBCiE6n2YNTycnJVFRU MGfOHKDpm3JWrVplEdPQ0IBOpyM2tvmm5kIIIYQQQtyr/wcr3UlLfH/DGgAAAABJRU5ErkJggg== " id="image817" x="2.5102806" y="0.015830245" /><rect diff --git a/src/doc/tutorials/index.rst b/src/doc/tutorials/index.rst index 02371de196cc139776416882aff31bd6fa4dabbe..b6f0fab511f3646f3ec6a7a320299e72a2c20038 100644 --- a/src/doc/tutorials/index.rst +++ b/src/doc/tutorials/index.rst @@ -7,5 +7,6 @@ This chapter contains a collection of tutorials. :maxdepth: 2 :caption: Contents: - Example CFood<example> + Parameter File<parameterfile> + Scientific Data Folder<scifolder> diff --git a/src/doc/tutorials/parameterfile.rst b/src/doc/tutorials/parameterfile.rst new file mode 100644 index 0000000000000000000000000000000000000000..9369ba8b83df8c484a4af8f240e1a1de2f4c10fb --- /dev/null +++ b/src/doc/tutorials/parameterfile.rst @@ -0,0 +1,151 @@ +Tutorial: Parameter File +======================== + +Our data +-------- + +In the "HelloWorld" Example, the Record, that was synchronized with the +server, was created "manually" using the Python client. Now, we want to +have a look at how the Crawler can be told to do this for us. + +The Crawler needs instructions on what kind of Records it should +create given the data that it sees. This is done using so called +"CFood" YAML files. + +Let’s once again start with something simple. A common scenario is that we +want to insert the contents of a parameter file. Suppose the +parameter file is named ``params_2022-02-02.json`` and looks like the +following: + + +.. code-block:: json + :caption: params_2022-02-02.json + + { + "frequency": 0.5, + "resolution": 0.01 + } + +Suppose these are two Properties of an Experiment and the date in the file name +is the date of the Experiment. Thus, the data model could be described in a +``model.yml`` like this: + +.. code-block:: yaml + :caption: model.yml + + Experiment: + recommended_properties: + frequency: + datatype: DOUBLE + resolution: + datatype: DOUBLE + date: + datatype: DATETIME + +We will identify experiments solely using the date, so the ``identifiable.yml`` is: + +.. code-block:: yaml + :caption: identifiable.yml + + Experiment: + - date + + +Getting started with the CFood +------------------------------ + +CFoods (Crawler configurations) can be stored in YAML files: +The following section in a `cfood.yml` tells the crawler that the key value pair +``frequency: 0.5`` shall be used to set the Property "frequency" of an +"Experiment" Record: + +.. code:: yaml + + ... + my_frequency: # just the name of this section + type: FloatElement # it is a float value + match_name: ^frequency$ # regular expression: Match the 'frequency' key from the data json + match_value: ^(?P<value>.*)$ # regular expression: We match any value of that key + records: + Experiment: + frequency: $value + ... + +The first part of this section defines which kind of data element shall be handled (here: a +key-value pair with key "frequency" and a float value) and then we use this to set the "frequency" +Property. + +How does it work to actually assign the value? Let's look at what the +regular expressions do: + +- ``^frequency$`` assures that the key is exactly "frequency". "^" matches the + beginning of the string and "$" matches the end. +- ``^(?P<value>.*)$`` creates a *named match group* with the name "value" and the + pattern of this group is ".*". The dot matches any character and the star means + that it can occur zero, one or multiple times. Thus, this regular expression + matches anything and puts it in a group with the name ``value``. + +We can use the groups from the regular expressions that are used for matching. +In our example, we use the "value" group to assign the "frequency" value to the "Experiment". + +A fully grown CFood +------------------- + +Since we will not pass this key value pair on its own to the crawler, we need +to embed it into its context. The full CFood file ``cfood.yml`` for +this example might look like the following: + +.. code-block:: yaml + :caption: cfood.yml + + --- + metadata: + crawler-version: 0.5.0 + --- + directory: # corresponds to the directory given to the crawler + type: Directory + match: .* # we do not care how it is named here + subtree: + parameterfile: # corresponds to our parameter file + type: JSONFile + match: params_(?P<date>\d+-\d+-\d+)\.json # extract the date from the parameter file + records: + Experiment: # one Experiment is associated with the file + date: $date # the date is taken from the file name + subtree: + dict: # the JSON contains a dictionary + type: Dict + match: .* # the dictionary does not have a meaningful name + subtree: + my_frequency: # here we parse the frequency... + type: FloatElement + match_name: frequency + match_value: (?P<val>.*) + records: + Experiment: + frequency: $val + resolution: # ... and here the resolution + type: FloatElement + match_name: resolution + match_value: (?P<val>.*) + records: + Experiment: + resolution: $val + +You do not need to understand every aspect of this right now. We will cover +this later in greater depth. You might think: "Ohh.. This is lengthy". Well, +yes BUT this is a very generic approach that allows data integration from ANY +hierarchical data structure (directory trees, JSON, YAML, HDF5, DICOM, ... and +combinations of those!) and as you will see in later chapters there are ways +to write this in a more condensed way! + +For now, we want to see it running! + +The crawler can now be run with the following command (assuming that +the CFood file is in the current working directory): + +.. code:: sh + + caosdb-crawler -s update -i identifiables.yml cfood.yml . + + diff --git a/src/doc/tutorials/scifolder.rst b/src/doc/tutorials/scifolder.rst new file mode 100644 index 0000000000000000000000000000000000000000..1fd7d2ba14d30631e51cd1b22a2a87c0c8b2be8a --- /dev/null +++ b/src/doc/tutorials/scifolder.rst @@ -0,0 +1,103 @@ +Scientific Folder Structure +=========================== + +The SciFolder structure +----------------------- + +Let's walk through a more elaborate example of using the CaosDB Crawler, +this time making use of a simple directory structure. We assume +the directory structure to have the following form: + +.. code-block:: text + + ExperimentalData/ + + 2022_ProjectA/ + + 2022-02-17_TestDataset/ + file1.dat + file2.dat + ... + ... + + 2023_ProjectB/ + ... + ... + +This file structure is described in our article "Guidelines for a Standardized Filesystem Layout for Scientific Data" (https://doi.org/10.3390/data5020043). As a simplified example +we want to write a crawler that creates "Project" and "Measurement" records in CaosDB and set +some reasonable properties stemming from the file and directory names. Furthermore, we want +to link the data files to the measurement records. + +Let's first clarify the terms we are using: + +.. code-block:: text + + ExperimentalData/ <--- Category level (level 0) + 2022_ProjectA/ <--- Project level (level 1) + 2022-02-17_TestDataset/ <--- Activity / Measurement level (level 2) + file1.dat <--- Files on level 3 + file2.dat + ... + ... + 2023_ProjectB/ <--- Project level (level 1) + ... + ... + +So we can see that this follows the three-level folder structure described in the paper. +We use the term "Activity level" here, instead of the terms used in the article, as +it can be used in a more general way. + +A CFood for SciFolder +--------------------- + +The following YAML CFood is able to match and insert / update the records accordingly, with a +detailed explanation of the YAML definitions: + +.. image:: example_crawler.svg + + +See for yourself +---------------- + +If you want to try this out for yourself, you will need the following content: + +- Data files in a SciFolder structure. +- A data model which describes the data. +- An identifiables definition which describes how data Entities can be identified. +- A CFood definition which the crawler uses to map from the folder structure to entities in CaosDB. + +You can download all the necessarily files, packed in `scifolder_tutorial.tar.gz +<../_static/assets/scifolder_tutorial.tar.gz>`__. After storing this archive file, unpack it and go +into the ``scifolder`` directory, then follow these steps: + +.. role:: shell(code) + :language: shell + +1. Copy the data files folder to the ``extroot`` directory of your LinkAhead installation: + + :shell:`cp -r scifolder_data ../../<your_extroot>/`. +2. Load the content of the data folder into CaosDB: + + :shell:`python -m caosadvancedtools.loadFiles /opt/caosdb/mnt/extroot/scifolder_data`. + + The path to loadfiles is the one that the CaosDB server sees, which is not necessarily the same + as the one on your local machine. The prefix ``/opt/caosdb/mnt/extroot/`` is correct for all + LinkAhead instances. If you are in doubt, please ask your administrator for the correct path. + + For more information on `loadFiles`, call :shell:`python -m caosadvancedtools.loadFiles --help`. + + .. note:: + + If the Records that are created shall be referenced by CaosDB File Entities, you + (currently) need to make them accessible in CaosDB in advance. For example, if you + have a folder with experimental data files and you want those files to be referenced + (for example by an Experiment Record). +3. Teach the server about the data model: + + :shell:`python -m caosadvancedtools.models.parser model.yml --sync` +4. Run the crawler on the local ``scifolder_data`` folder, using the identifiables and CFood + definition files: + + :shell:`caosdb-crawler -s update -i identifiables.yml scifolder_cfood.yml scifolder_data` + diff --git a/src/doc_sources/scifolder/identifiables.yml b/src/doc_sources/scifolder/identifiables.yml new file mode 100644 index 0000000000000000000000000000000000000000..ac2e458b02416e2cbd93b5132468a7daa31fb135 --- /dev/null +++ b/src/doc_sources/scifolder/identifiables.yml @@ -0,0 +1,8 @@ +Person: + - last_name +Measurement: + - date + - project +Project: + - date + - identifier diff --git a/src/doc_sources/scifolder/model.yml b/src/doc_sources/scifolder/model.yml new file mode 100644 index 0000000000000000000000000000000000000000..7e1a391186be6a01fb10d0b32e8516238012f374 --- /dev/null +++ b/src/doc_sources/scifolder/model.yml @@ -0,0 +1,88 @@ +Experiment: + obligatory_properties: + date: + datatype: DATETIME + description: 'date of the experiment' + identifier: + datatype: TEXT + description: 'identifier of the experiment' + # TODO empty recommended_properties is a problem + #recommended_properties: + responsible: + datatype: LIST<Person> +Project: +SoftwareVersion: + recommended_properties: + version: + datatype: TEXT + description: 'Version of the software.' + binaries: + sourceCode: + Software: +DepthTest: + obligatory_properties: + temperature: + datatype: DOUBLE + description: 'temp' + depth: + datatype: DOUBLE + description: 'temp' +Person: + obligatory_properties: + first_name: + datatype: TEXT + description: 'First name of a Person.' + last_name: + datatype: TEXT + description: 'LastName of a Person.' + recommended_properties: + email: + datatype: TEXT + description: 'Email of a Person.' +revisionOf: + datatype: REFERENCE +results: + datatype: LIST<REFERENCE> +sources: + datatype: LIST<REFERENCE> +scripts: + datatype: LIST<REFERENCE> +single_attribute: + datatype: LIST<INTEGER> +Simulation: + obligatory_properties: + date: + identifier: + responsible: +Analysis: + obligatory_properties: + date: + identifier: + responsible: + suggested_properties: + mean_value: + datatype: DOUBLE +Publication: +Thesis: + inherit_from_suggested: + - Publication +Article: + inherit_from_suggested: + - Publication +Poster: + inherit_from_suggested: + - Publication +Presentation: + inherit_from_suggested: + - Publication +Report: + inherit_from_suggested: + - Publication +hdf5File: + datatype: REFERENCE +Measurement: + recommended_properties: + date: +ReadmeFile: + datatype: REFERENCE +ProjectMarkdownReadme: diff --git a/src/doc_sources/scifolder/scifolder_cfood.yml b/src/doc_sources/scifolder/scifolder_cfood.yml new file mode 100644 index 0000000000000000000000000000000000000000..34256309989acf5447abf83e32162190acba90bf --- /dev/null +++ b/src/doc_sources/scifolder/scifolder_cfood.yml @@ -0,0 +1,86 @@ +# This is only a scifolder test cfood with a limited functionality. +# The full scifolder cfood will be developed here: +# https://gitlab.indiscale.com/caosdb/src/crawler-cfoods/scifolder-cfood + +--- +metadata: + crawler-version: 0.5.1 +--- +Definitions: + type: Definitions + #include "description.yml" + +Data: # name of the converter + type: Directory + match: (.*) + subtree: + DataAnalysis: # name of the converter + type: Directory + match: DataAnalysis + subtree: &template + project_dir: # name of the first subtree element which is a converter + type: Directory + match: ((?P<date>[0-9]{4,4})_)?(?P<identifier>.*) + records: + Project: # this is an identifiable in this case + parents: + - Project # not needed as the name is equivalent + date: $date + identifier: ${identifier} + + subtree: + measurement: # new name for folders on the 3rd level + type: Directory + match: (?P<date>[0-9]{4,4}-[0-9]{2,2}-[0-9]{2,2})(_(?P<identifier>.*))? + records: + Measurement: + date: $date + identifier: $identifier + project: $Project + subtree: + README: + type: MarkdownFile # this is a subclass of converter File + # function signature: GeneralStore, StructureElement + # preprocessors: custom.caosdb.convert_values + match: ^README\.md$ + # how to make match case insensitive? + subtree: + description: + type: TextElement + match_value: (?P<description>.*) + match_name: description + records: + Measurement: + description: $description + responsible_single: + type: TextElement + match_name: responsible + match_value: &person_regexp ((?P<first_name>.+) )?(?P<last_name>.+) + records: &responsible_records + Person: + first_name: $first_name + last_name: $last_name + Measurement: # this uses the reference to the above defined record + responsible: +$Person # each record also implicitely creates a variable + # with the same name. The "+" indicates, that + # this will become a list entry in list property + # "responsible" belonging to Measurement. + + responsible_list: + type: DictListElement + match_name: responsible + subtree: + Person: + type: TextElement + match_value: *person_regexp + records: *responsible_records + + ExperimentalData: # name of the converter + type: Directory + match: ExperimentalData + subtree: *template + + SimulationData: # name of the converter + type: Directory + match: SimulationData + subtree: *template diff --git a/src/doc_sources/scifolder/scifolder_data/DataAnalysis/2020_SpeedOfLight/2020-01-04_average-all-exp/README.md b/src/doc_sources/scifolder/scifolder_data/DataAnalysis/2020_SpeedOfLight/2020-01-04_average-all-exp/README.md new file mode 100644 index 0000000000000000000000000000000000000000..87f2206efa83701d9a90757811462d3042d8eb3f --- /dev/null +++ b/src/doc_sources/scifolder/scifolder_data/DataAnalysis/2020_SpeedOfLight/2020-01-04_average-all-exp/README.md @@ -0,0 +1,20 @@ +--- +responsible: AuthorA +description: Average over all data of each type of experiment separately and comined. +sources: +- ../../../ExperimentalData/2020_SpeedOfLight/2020-01-01_TimeOfFlight +- ../../../ExperimentalData/2020_SpeedOfLight/2020-01-02_Cavity +- ../../../ExperimentalData/2020_SpeedOfLight/2020-01-03/velocities.txt +results: +- file: single-averages-*.csv + description: average speed of light from all single types of measurements +- file: all-averages.csv + description: average speed of light from all measurements combined +- file: "*.pdf" + description: Plots of the averages +scripts: +- file: calculate-averages.py + description: python code doing the calculation +- file: plot-averages.py + description: create nice plots for article +... diff --git a/src/doc_sources/scifolder/scifolder_data/DataAnalysis/2020_SpeedOfLight/2020-01-05_average-all-exp-corr/README.md b/src/doc_sources/scifolder/scifolder_data/DataAnalysis/2020_SpeedOfLight/2020-01-05_average-all-exp-corr/README.md new file mode 100644 index 0000000000000000000000000000000000000000..fe1cdb06194c473f44c4179210cc58692ee68e9d --- /dev/null +++ b/src/doc_sources/scifolder/scifolder_data/DataAnalysis/2020_SpeedOfLight/2020-01-05_average-all-exp-corr/README.md @@ -0,0 +1,21 @@ +--- +responsible: AuthorA +description: Average over all data of each type of experiment separately and comined. +sources: +- ../../../ExperimentalData/2020_SpeedOfLight/2020-01-01_TimeOfFlight +- ../../../ExperimentalData/2020_SpeedOfLight/2020-01-02_Cavity +- ../../../ExperimentalData/2020_SpeedOfLight/2020-01-03/velocities.txt +results: +- file: single-averages-*.csv + description: average speed of light from all single types of measurements +- file: all-averages.csv + description: average speed of light from all measurements combined +- file: "*.pdf" + description: Plots of the averages +scripts: +- file: calculate-averages.py + description: python code doing the calculation +- file: plot-averages.py + description: create nice plots for article +revisionOf: ../2020-01-04_average-all-exp +... diff --git a/src/doc_sources/scifolder/scifolder_data/DataAnalysis/2020_climate-model-predict/2020-02-08_prediction-errors/README.md b/src/doc_sources/scifolder/scifolder_data/DataAnalysis/2020_climate-model-predict/2020-02-08_prediction-errors/README.md new file mode 100644 index 0000000000000000000000000000000000000000..c9c2050816362f8f80887b9f964e70ba7a413f8f --- /dev/null +++ b/src/doc_sources/scifolder/scifolder_data/DataAnalysis/2020_climate-model-predict/2020-02-08_prediction-errors/README.md @@ -0,0 +1,15 @@ +--- +responsible: AuthorD +description: comparison between predicted and measured temperatures for 2010 to 2019 +sources: +- ../../../ExperimentalData/2020_climate-model-predict/2010-01-01/temperatures-*.csv +- ../../../SimulationData/2020_climate-model-predict/2020-02-01/predictions-*.csv +results: +- file: "*.pdf" + description: Plots of absolute and relative errors +- file: errors.csv + description: prediction errors for all measurement locations +scripts: +- file: differences.py + description: Calculate the absolute and relative differences between predicted and measured temperatures, and plot them. +... diff --git a/src/doc_sources/scifolder/scifolder_data/ExperimentalData/2020_SpeedOfLight/2020-01-01_TimeOfFlight/README.md b/src/doc_sources/scifolder/scifolder_data/ExperimentalData/2020_SpeedOfLight/2020-01-01_TimeOfFlight/README.md new file mode 100644 index 0000000000000000000000000000000000000000..b6bad97bbd6697638f912ac99799b621719d1884 --- /dev/null +++ b/src/doc_sources/scifolder/scifolder_data/ExperimentalData/2020_SpeedOfLight/2020-01-01_TimeOfFlight/README.md @@ -0,0 +1,6 @@ +--- +responsible: +- AuthorA +- AuthorB +description: Time-of-flight measurements to determine the speed of light +... diff --git a/src/doc_sources/scifolder/scifolder_data/ExperimentalData/2020_SpeedOfLight/2020-01-02_Cavity/README.md b/src/doc_sources/scifolder/scifolder_data/ExperimentalData/2020_SpeedOfLight/2020-01-02_Cavity/README.md new file mode 100644 index 0000000000000000000000000000000000000000..f5302678afe92c507b735009918cba0425a3bf76 --- /dev/null +++ b/src/doc_sources/scifolder/scifolder_data/ExperimentalData/2020_SpeedOfLight/2020-01-02_Cavity/README.md @@ -0,0 +1,6 @@ +--- +responsible: +- AuthorA +- AuthorC +description: Cavity resonance measurements for determining the speed of light +... diff --git a/src/doc_sources/scifolder/scifolder_data/ExperimentalData/2020_SpeedOfLight/2020-01-03/README.md b/src/doc_sources/scifolder/scifolder_data/ExperimentalData/2020_SpeedOfLight/2020-01-03/README.md new file mode 100644 index 0000000000000000000000000000000000000000..4d32e1d7f682c138cf42b36dc482ce4cecb0e940 --- /dev/null +++ b/src/doc_sources/scifolder/scifolder_data/ExperimentalData/2020_SpeedOfLight/2020-01-03/README.md @@ -0,0 +1,9 @@ +--- +responsible: +- AuthorA +- AuthorB +description: Radio interferometry measurements to determine the speed of light +results: +- file: velocities.txt + description: velocities of all measurements +... diff --git a/src/doc_sources/scifolder/scifolder_data/ExperimentalData/2020_climate-model-predict/1980-01-01/README.md b/src/doc_sources/scifolder/scifolder_data/ExperimentalData/2020_climate-model-predict/1980-01-01/README.md new file mode 100644 index 0000000000000000000000000000000000000000..6a625d10fd1f7d1a0fa4f024872ab19084ebccec --- /dev/null +++ b/src/doc_sources/scifolder/scifolder_data/ExperimentalData/2020_climate-model-predict/1980-01-01/README.md @@ -0,0 +1,7 @@ +--- +responsible: AuthorD +description: Average temperatures of the years 1980-1989 as obtained from wheatherdata.example +results: +- file: temperatures-198*.csv + description: single year averages of all measurement stations with geographic locations +... diff --git a/src/doc_sources/scifolder/scifolder_data/ExperimentalData/2020_climate-model-predict/1990-01-01/README.md b/src/doc_sources/scifolder/scifolder_data/ExperimentalData/2020_climate-model-predict/1990-01-01/README.md new file mode 100644 index 0000000000000000000000000000000000000000..87053c2c1902e791f42743b7de93bd79b6fd5649 --- /dev/null +++ b/src/doc_sources/scifolder/scifolder_data/ExperimentalData/2020_climate-model-predict/1990-01-01/README.md @@ -0,0 +1,7 @@ +--- +responsible: AuthorD +description: Average temperatures of the years 1990-1999 as obtained from wheatherdata.example +results: +- file: temperatures-199*.csv + description: single year averages of all measurement stations with geographic locations +... diff --git a/src/doc_sources/scifolder/scifolder_data/ExperimentalData/2020_climate-model-predict/2000-01-01/README.md b/src/doc_sources/scifolder/scifolder_data/ExperimentalData/2020_climate-model-predict/2000-01-01/README.md new file mode 100644 index 0000000000000000000000000000000000000000..95eb81650437267d67ddbaaceecc246a56e619cf --- /dev/null +++ b/src/doc_sources/scifolder/scifolder_data/ExperimentalData/2020_climate-model-predict/2000-01-01/README.md @@ -0,0 +1,7 @@ +--- +responsible: AuthorD +description: Average temperatures of the years 2000-2009 as obtained from wheatherdata.example +results: +- file: temperatures-200*.csv + description: single year averages of all measurement stations with geographic locations +... diff --git a/src/doc_sources/scifolder/scifolder_data/ExperimentalData/2020_climate-model-predict/2010-01-01/README.md b/src/doc_sources/scifolder/scifolder_data/ExperimentalData/2020_climate-model-predict/2010-01-01/README.md new file mode 100644 index 0000000000000000000000000000000000000000..bb91400eb3a8662e1b589eda7a0af65f0a68064a --- /dev/null +++ b/src/doc_sources/scifolder/scifolder_data/ExperimentalData/2020_climate-model-predict/2010-01-01/README.md @@ -0,0 +1,7 @@ +--- +responsible: AuthorD +description: Average temperatures of the years 2010-2019 as obtained from wheatherdata.example +results: +- file: temperatures-201*.csv + description: single year averages of all measurement stations with geographic locations +... diff --git a/src/doc_sources/scifolder/scifolder_data/Publications/Articles/2020_AuthorA-JourRel/README.md b/src/doc_sources/scifolder/scifolder_data/Publications/Articles/2020_AuthorA-JourRel/README.md new file mode 100644 index 0000000000000000000000000000000000000000..25078c5084c72a9b0d7f0388605373fdf88a5cdd --- /dev/null +++ b/src/doc_sources/scifolder/scifolder_data/Publications/Articles/2020_AuthorA-JourRel/README.md @@ -0,0 +1,16 @@ +--- +responsible: +- AuthorA +- AuthorB +- AuthorC +description: Article on the comparison of several experimental methods for determining the speed of light. +sources: +- ../../../ExperimentalData/2020_SpeedOfLight/2020-01-01_TimeOfFlight +- ../../../ExperimentalData/2020_SpeedOfLight/2020-01-02_Cavity +- ../../../ExperimentalData/2020_SpeedOfLight/2020-01-03/velocities.txt +- ../../../DataAnalysis/2020-01-05_average-all-exp-corr +... + +# Further Notes + + The corrected analysis was used in Figure 1. \ No newline at end of file diff --git a/src/doc_sources/scifolder/scifolder_data/Publications/Presentations/2020-03-01_AuthorD-climate-model-conf/README.md b/src/doc_sources/scifolder/scifolder_data/Publications/Presentations/2020-03-01_AuthorD-climate-model-conf/README.md new file mode 100644 index 0000000000000000000000000000000000000000..5f04c0747a9eb6910c23421905268b845baf7485 --- /dev/null +++ b/src/doc_sources/scifolder/scifolder_data/Publications/Presentations/2020-03-01_AuthorD-climate-model-conf/README.md @@ -0,0 +1,11 @@ +--- +responsible: AuthorD +description: beamer slides of the conference talk given at the 2020 climate modeling conference in Berlin +sources: +- ../../../ExperimentalData/2020_climate-model-predict/1980-01-01/temperatures-*.csv +- ../../../ExperimentalData/2020_climate-model-predict/1990-01-01/temperatures-*.csv +- ../../../ExperimentalData/2020_climate-model-predict/2000-01-01/temperatures-*.csv +- ../../../ExperimentalData/2020_climate-model-predict/2010-01-01/temperatures-*.csv +- ../../../SimulationData/2020_climate-model-predict/2020-02-01 +- ../../../DataAnalysis/2020_climate-model-predict/2020-02-08_prediction-errors +... diff --git a/src/doc_sources/scifolder/scifolder_data/Publications/Reports/2020-01-10_avg-speed-of-light/README.md b/src/doc_sources/scifolder/scifolder_data/Publications/Reports/2020-01-10_avg-speed-of-light/README.md new file mode 100644 index 0000000000000000000000000000000000000000..781d1550a661ff09633477af0efa22ca98cfdb76 --- /dev/null +++ b/src/doc_sources/scifolder/scifolder_data/Publications/Reports/2020-01-10_avg-speed-of-light/README.md @@ -0,0 +1,4 @@ +--- +responsible: AuthorA +description: Short report comparing different speed of light measurements +... diff --git a/src/doc_sources/scifolder/scifolder_data/SimulationData/2020_climate-model-predict/2020-02-01/README.md b/src/doc_sources/scifolder/scifolder_data/SimulationData/2020_climate-model-predict/2020-02-01/README.md new file mode 100644 index 0000000000000000000000000000000000000000..0c91d6b5f7601334b84a77328b888d227e779a93 --- /dev/null +++ b/src/doc_sources/scifolder/scifolder_data/SimulationData/2020_climate-model-predict/2020-02-01/README.md @@ -0,0 +1,24 @@ +--- +responsible: AuthorE +description: >- + Code for fitting the predictive model to the + training data and for predicting the average + annual temperature for all measurement stations + for the years 2010 to 2019 +sources: +- ../../../ExperimentalData/2020_climate-model-predict/1980-01-01/temperatures-*.csv +- ../../../ExperimentalData/2020_climate-model-predict/1990-01-01/temperatures-*.csv +- ../../../ExperimentalData/2020_climate-model-predict/2000-01-01/temperatures-*.csv +results: +- file: params.json + description: Model parameters for the best fit to the training set +- file: predictions-201*.csv + description: Annual temperature predictions with geographical locations +scripts: +- file: model.py + description: python module with the model equations +- file: fit_parameters.py + description: Fit model parameters to training data using a basinhopping optimizer +- file: predict.py + description: Use optimized parameters to simulate average temperatures from 2010 to 2019 +...